• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Identified: A mechanism that protects plant fertility from stress

Bioengineer by Bioengineer
March 1, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Warwick

  • Spikes in temperature can affect a plant’s fertility, resulting in a reduction of yield and economic loss
  • How plants can protect themselves from stress has been studied by a consortium led by the University of Warwick
  • Two argonaute-like proteins protect the plant’s fertility, understanding these proteins is critical to safeguarding crop production

As Temperatures rise due to global warming the need to protect plants from stressful conditions has increased, as stress can cause a loss in yield and cause further impact economically. A consortium led by the University of Warwick have successfully identified two proteins that protect crops from stress, which is key in safeguarding food production.

Plant fertility is dramatically affected by spikes in temperature, directly resulting in yield reduction and economic loss. Understanding the molecular mechanisms that underpin plant fertility under environmental constraints is critical to safeguarding food production.

In the paper, ‘A transposon surveillance mechanism that safeguards plant male fertility during stress’, published in the journal Nature Plants, led by researchers from the School of Life Sciences at the University of Warwick have studied the molecular mechanisms that maize plants utilise to safeguard fertility under high temperatures, and identified two Argonaute-like (AGO) proteins that protect the male sex cells.

By subjecting maize plants with non-functional AGO proteins to different growth conditions, researchers discovered that a 5?C increase in ambient temperature dramatically decreased male fertility.

Using a multidisciplinary approach, the team found that higher temperatures activated small pieces of ribonucleic acid (or small RNAs) in wild-type plants, which bind to these AGO proteins to control the activity of stress-activated jumping genes – pieces of DNA that can copy themselves into different parts of the genome. Therefore, these AGO proteins control the activity of jumping-genes, thereby protect plant fertility.

Professor Jose Gutierrez-Marcos, from the School of Life Sciences at the University of Warwick explains:

“We have essentially found that when plants are stressed by high temperatures they activate an RNA-guided surveillance mechanism in the form of small RNAs and Argonaute proteins, in reproductive cells which are critical to sustain male fertility and ultimately plant survival.

“Understanding the molecular mechanism implicated in safeguarding plant fertility is critical to safeguard future crop production under unpredictable and stressful climatic conditions.”

Dr Charo del Genio, from the School of Computing, Electronics and Mathematics at Coventry University adds:

“Modelling the structure of the Argonaute proteins and simulating them at the level of the single atoms revealed how they change their electric charge when subject to thermal stress, initiating the process that brings the jumping genes back under control.”

###

Media Contact
Alice Scott
[email protected]

Original Source

https://warwick.ac.uk/newsandevents/pressreleases/identified_a_mechanism

Tags: Agricultural Production/EconomicsAgricultureClimate ChangeEcology/EnvironmentEvolutionPaleontologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Clinician Decision-Making: The SHARE Approach

September 11, 2025

Fluctuating DNA Methylation Maps Cancer Evolution

September 11, 2025

Ultrabroadband Carbon Nanotube Scanners Revolutionize Pharma Quality

September 11, 2025

Amino Acids Stabilize Proteins and Colloids

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Clinician Decision-Making: The SHARE Approach

Fluctuating DNA Methylation Maps Cancer Evolution

Ultrabroadband Carbon Nanotube Scanners Revolutionize Pharma Quality

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.