• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Identification of protective antibodies may be key to effective malaria vaccine

Bioengineer by Bioengineer
June 13, 2019
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An Oxford-led study has identified the antibodies that may hold the key to creating the first effective vaccine against malaria infection in the blood

Researchers from the University of Oxford, along with partners from five institutions around the world, have identified the human antibodies that prevent the malaria parasite from entering blood cells, which may be key to creating a highly effective malaria vaccination. The results of the study were published today in the journal Cell.

“Following an infectious mosquito bite, the malaria parasite goes first to the human liver, and then moves into the blood. Here it replicates ten-fold every 48 hours inside red blood cells – it is this blood-stage of the infection that leads to illness and can be fatal,” explains study author Simon Draper, Professor of Vaccinology and Translational Medicine at the Nuffield Department of Medicine, University of Oxford. “The malaria parasite has a protein called RH5, which must bind to a human protein on red blood cells called basigin in order to infect them. In this study, we were able to demonstrate which human antibodies effectively block RH5 from binding with basigin, thus preventing the parasite from spreading through the blood.”

The study was done as part of a clinical trial in Oxford of the first vaccine that targets the RH5 malaria protein. Until now, however, it was not clearly understood which specific antibodies could be generated by vaccination of a human volunteer and would effectively prevent RH5 from binding to red blood cells. “When someone is vaccinated, they make many different types of antibodies against the same RH5 target,” explains co-author and researcher Dr Daniel Alanine. “This study is key to understanding which specific antibodies are actually effective against malaria, and which are not.”

Another key finding of the study is the identification of an exciting new antibody, which works by slowing down the speed in which RH5 binds to red blood cells. “The parasite can still invade, but this antibody slows down the invasion,” says study co-author Matthew Higgins, Professor of Molecular Parasitology at the Department of Biochemistry, University of Oxford. “This gives the antibodies that do block RH5 more time to act, helping them become more effective. This is an exciting finding because it shows that antibodies which do not prevent the parasite from getting into red blood cells might still be useful, by making the protective antibodies more potent.”

There remains an urgent need to develop an effective malaria vaccine. Despite the increasing use of bed nets, insecticides and drugs in malaria-endemic regions, malaria still kills approximately 430,000 people each year. Scientists have yet been unsuccessful at creating a vaccine that works against the malaria parasite in the blood. The current vaccine based on RH5 has so far shown real promise, and continues to be trialled in the UK and Africa.

“We know the key to stopping malaria is a strong immune response, and so every antibody counts,” says Draper. “What we must do next is use these findings to develop an improved RH5 vaccine that induces more of the effective antibodies and less of the non-effective ones – this will ultimately make a better vaccine, and hopefully lead to an effective means of preventing malaria.”

###

Media Contact
Gen Juillet
[email protected]
http://dx.doi.org/10.1016/j.cell.2019.05.025

Tags: Clinical TrialsDisease in the Developing WorldInfectious/Emerging DiseasesMedicine/HealthMolecular BiologyParasitologyPublic HealthVaccines
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LDL Cholesterol Levels Decrease in Veterans Participating in Health Coach-Led Program

New Study Reveals Unique Brain-Gene Connections Tied to Symptom Severity in Children with Autism and ADHD

Saccharomyces boulardii Eases Pediatric IBS-D: Animal Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.