• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Hybrid enzyme catalysts synthesized by a de novo approach for expanding biocatalysis

Bioengineer by Bioengineer
July 8, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Chinese Journal of Catalysis

The two major challenges in industrial enzymatic catalysis are the limited number of chemical reaction types that are catalyzed by enzymes and the instability of enzymes under harsh conditions in industrial catalysis. Expanding enzyme catalysis to a larger substrate scope and greater variety of chemical reactions and tuning the microenvironment surrounding enzyme molecules to achieve high enzyme performance are urgently needed.

Recently, a research team led by Prof. Jun Ge from Tsinghua University, China reviewed their efforts using the de novo approach to synthesize hybrid enzyme catalysts that can address these two challenges and the structure-function relationship is discussed to reveal the principles of designing hybrid enzyme catalysts. The results were published in Chinese Journal of Catalysis.

In 2012, they first reported a coprecipitation method to prepare enzyme-inorganic-crystal composites. The coprecipitation method is general for preparing hybrid enzyme catalysts with various inorganic crystals, including MOFs. In 2014, they first proposed a coprecipitation strategy for directly synthesizing protein-embedded MOFs. The coprecipitation strategy for synthesizing enzyme-MOF composites is widely used in different types of MOFs, enzymes, proteins, DNA, siRNA, antibodies, and even cells. The mechanisms of enhancement of activity and stability of enzymes in the confined environment of MOFs were discussed. In addition to this, they constructed multienzyme-MOF composites to enhance the cascade reaction in a confined scaffold and developed a coarse-grained, particle-based model to understand the origin of the activity enhancement.

The apparent activity of enzymes in MOFs with a limited pore size is usually compromised when the enzyme substrate has a relatively high molecular weight. By introducing defects within the MOF matrix to generate larger pores, diffusional restrictions can be alleviated. Therefore, they developed methods for introducing defects into MOFs during coprecipitation. Tuning the concentration of precursors of MOFs, defected and even amorphous MOFs can be synthesized. These defects created mesopores in the composites, facilitated access of the substrates to the encapsulated enzymes and improved the apparent enzyme activity. The mechanism of defect generation was thoroughly studied and understood.

Moreover, instead of enzyme encapsulation, small inorganic crystals can grow in situ in a confined environment on the surface of an enzyme to combine enzymatic catalysis and chemocatalysis. They demonstrated how to construct an enzyme-metal hybrid catalyst to efficiently combine enzyme catalysis and metal cluster catalysis. Single lipase-polymer conjugates as confined nanoreactors were utilized for the in situ generation of Pd nanoparticles/clusters to accomplish chemoenzymatic dynamic kinetic resolution (DKR) of amines. The distinct size-dependent activity of Pd nanoparticles was observed. Experiments and simulations suggested that the engineering of the oxidation state of Pd plays an important role in the activity of Pd in the hybrid catalyst. This strategy for constructing enzyme-metal hybrid catalysts with excellent compatibility between enzymatic and metal-catalytic activities leads to many potential applications in chemical industry.

###

This work was supported by the Beijing Natural Science Foundation (JQ18006), the National Key Research and Development Plan of China (2016YFA0204300) and the National Natural Science Foundation of China (21622603, 21878174, 21911540467).

About the Journal

Chinese Journal of Catalysis is co-sponsored by Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Chinese Chemical Society, and it is currently published by Elsevier group. This monthly journal publishes in English timely contributions of original and rigorously reviewed manuscripts covering all areas of catalysis. The journal publishes Reviews, Accounts, Communications, Articles, Highlights, Perspectives, and Viewpoints of highly scientific values that help understanding and defining of new concepts in both fundamental issues and practical applications of catalysis. Chinese Journal of Catalysis ranks among the top six journals in Applied Chemistry with a current SCI impact factor of 8.271. The Editors-in-Chief are Profs. Can Li and Tao Zhang.

At Elsevier http://www.journals.elsevier.com/chinese-journal-of-catalysis

Manuscript submission https://mc03.manuscriptcentral.com/cjcatal

Media Contact
Fan He
[email protected]

Original Source

http://doi.org/10.1016/S1872-2067(21)63798-1

Related Journal Article

http://dx.doi.org/10.1016/S1872-2067(21)63798-1

Tags: BiochemistryChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsPharmaceutical SciencesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unraveling Tetracladium Spp.: Ecological Versatility Revealed

November 6, 2025

Ultrasound Assessment of Urinary Tract in Myelomeningocele Infants

November 6, 2025

Assessing Magnetic Stimulation for Spasticity in Cerebral Palsy

November 6, 2025

Novel Gene Engineering Tactics Combat Tumor Antigen Evasion

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Tetracladium Spp.: Ecological Versatility Revealed

Ultrasound Assessment of Urinary Tract in Myelomeningocele Infants

Assessing Magnetic Stimulation for Spasticity in Cerebral Palsy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.