• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How transcription factors explore the genome

Bioengineer by Bioengineer
January 30, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: David Suter/EPFL


Transcription factors (TFs) are proteins that regulate the transcription of genes, which is the first step in making a protein. The way TFs work is by searching the entire genome and binding to specific regions that regulate genes, turning them “on” or “off”. TFs are known to not only bind to specific sequences of DNA, but also to non-specifically bind to any stretch of DNA.

This non-specific association can drastically increase the ability of TFs to find their specific target sites by allowing them to slide along DNA. However, we do not understand how the more than 1,500 human TFs vary in their efficiency to scan the massive genome, locate and bind specific sites.

Now, the lab of David Suter at EPFL’s Institute of Bioengineering has found a way to predict the efficiency with which different TFs scan the genome in living cells. The scientists studied 501 TFs in the mouse by looking at how they bind to “mitotic” chromosomes, a property that has been linked to the ability of TFs to associate with DNA in a non-specific manner.

Using photobleaching experiments and single molecule imaging, the scientists found that TFs movements in the nucleus and the efficiency at which they find their binding sites can be predicted by mitotic chromosome binding.

By combining these experiments with the TF mapping in the whole genome, they found that different TFs vary by three orders of magnitude in their ability to find their sites. Thus, TF with strong non-specific DNA binding properties associate with mitotic chromosomes, move slowly in the nucleus and are particularly efficient at finding the specific sequences they need to bind to regulate gene expression.

“Transcription factors differ largely in their ability to scan the genome to find their specific binding sites, and these differences can be predicted by simply looking at how much they bind to mitotic chromosomes,” says David Suter. “Transcription factors that are the most efficient in searching the genome could be able to drive broad changes in gene expression patterns even when expressed at low concentrations, and can therefore be particularly important for cell fate decision processes.”

###

Other contributors

Ulm University

Reference

Mahé Raccaud, Elias T. Friman, Andrea B. Alber, Harsha Agarwal, Cédric Deluz, Timo Kuhn, J. Christof M. Gebhardt, David M. Suter. Mitotic chromosome binding predicts transcription factor properties in interphase. Nature Communications 30 January 2019. DOI: 10.1038/s41467-019-08417-5.

Media Contact
Nik Papageorgiou
[email protected]
41-216-932-105

Original Source

https://actu.epfl.ch/news/how-transcription-factors-explore-the-genome

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-08417-5

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyGenesGeneticsMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Global Movement and Annual Cycle in Spoonbills

Global Movement and Annual Cycle in Spoonbills

September 10, 2025
blank

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

September 10, 2025

Fermented Poncirus Extract Inhibits Fat Cell Formation

September 10, 2025

Life at the Edge: Exploring Survival Within Arctic Ice

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Movement and Annual Cycle in Spoonbills

Targeted Intraoperative Radiotherapy Advances in Early Breast Cancer

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.