• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How to use antibodies to control chemical reactions

Bioengineer by Bioengineer
December 7, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers developed a strategy to synthesize functional molecules with specific diagnostic antibodies

IMAGE

Credit: Illustration by Oscar Melendre Hoyos

Antibodies are remarkable biomarkers: they are the cues that provide us with indications about many diseases and how our immune system counter them. Now a group of scientists from the University of Rome, Tor Vergata (Italy) has found a way to repurpose them so that they can trigger a specific chemical reaction.

“We demonstrated a strategy to use specific antibodies to control chemical reactions forming a wide range of molecules, from imaging to therapeutic agents.” says Francesco Ricci, full professor at the University of Rome Tor Vergata and senior author of the article. “Our approach allows to synthesize a functional molecule from inactive precursors only when a specific antibody is present in the reaction mixture”.

To achieve this goal, the researchers took advantage of the versatility of synthetic DNA oligonucleotides and of the predictability of DNA-DNA interactions. “Synthetic oligonucleotides are amazing molecules, they can be modified with a range of reactive groups and also with recognition elements that can target specific antibodies.” says Lorena Baranda, PhD student in the group of Prof. Ricci and first author of the article. “In our work we rationally designed and synthesized a pair of modified DNA sequences that can recognize a specific antibody and bind to it. When this happens the reactive groups appended on the other ends of the DNA strands will be in close proximity and their reaction will be triggered ultimately leading to the formation of a chemical product”, she explains.

The strategy demonstrated in this work can be used, for example, to control the formation of functional molecules, such as therapeutic agents, with biomarker antibodies. As a proof of principle of this possible application the researchers demonstrated the formation of an anticoagulant drug able to inhibit the activity of thrombin, a key enzyme of blood coagulation and an important target for the treatment of thrombosis. “We demonstrated that a specific IgG antibody can trigger the formation of the anticoagulant agent, which was further proven to efficiently inhibit the activity of thrombin” says Prof. Ricci. “The strategy is highly specific to the antibody of interest and also programmable. We envision it would represent a new avenue to targeted therapy and diagnostics”, he concludes.

###

The research in this paper was conducted also by Gianfranco Ercolani and Malihe Mahdifar of the University of Rome Tor Vergata and by Jonathan Watson and Tom Brown Jr of the company ATDBio, Oxford, UK.

Media Contact
Francesco Ricci
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-20024-3

Tags: BiochemistryBiotechnologyChemistry/Physics/Materials SciencesMolecular BiologyNanotechnology/Micromachines
Share14Tweet9Share2ShareShareShare2

Related Posts

Obstructive sleep apnea disrupts gene activity throughout the day in mice

Obstructive sleep apnea disrupts gene activity throughout the day in mice

May 30, 2023
michael HIV vaccine

Researchers use ‘natural’ system to identify proteins most useful for developing an effective HIV vaccine

May 30, 2023

Scientists identify how some angiogenic drugs used to treat cancer and heart disease cause vascular disease

May 30, 2023

CSI Singapore researchers uncover potential novel therapeutic targets against natural killer/T-cell lymphoma

May 30, 2023
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Obstructive sleep apnea disrupts gene activity throughout the day in mice

Researchers use ‘natural’ system to identify proteins most useful for developing an effective HIV vaccine

Scientists identify how some angiogenic drugs used to treat cancer and heart disease cause vascular disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In