• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How to use antibodies to control chemical reactions

Bioengineer by Bioengineer
December 7, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers developed a strategy to synthesize functional molecules with specific diagnostic antibodies

IMAGE

Credit: Illustration by Oscar Melendre Hoyos

Antibodies are remarkable biomarkers: they are the cues that provide us with indications about many diseases and how our immune system counter them. Now a group of scientists from the University of Rome, Tor Vergata (Italy) has found a way to repurpose them so that they can trigger a specific chemical reaction.

“We demonstrated a strategy to use specific antibodies to control chemical reactions forming a wide range of molecules, from imaging to therapeutic agents.” says Francesco Ricci, full professor at the University of Rome Tor Vergata and senior author of the article. “Our approach allows to synthesize a functional molecule from inactive precursors only when a specific antibody is present in the reaction mixture”.

To achieve this goal, the researchers took advantage of the versatility of synthetic DNA oligonucleotides and of the predictability of DNA-DNA interactions. “Synthetic oligonucleotides are amazing molecules, they can be modified with a range of reactive groups and also with recognition elements that can target specific antibodies.” says Lorena Baranda, PhD student in the group of Prof. Ricci and first author of the article. “In our work we rationally designed and synthesized a pair of modified DNA sequences that can recognize a specific antibody and bind to it. When this happens the reactive groups appended on the other ends of the DNA strands will be in close proximity and their reaction will be triggered ultimately leading to the formation of a chemical product”, she explains.

The strategy demonstrated in this work can be used, for example, to control the formation of functional molecules, such as therapeutic agents, with biomarker antibodies. As a proof of principle of this possible application the researchers demonstrated the formation of an anticoagulant drug able to inhibit the activity of thrombin, a key enzyme of blood coagulation and an important target for the treatment of thrombosis. “We demonstrated that a specific IgG antibody can trigger the formation of the anticoagulant agent, which was further proven to efficiently inhibit the activity of thrombin” says Prof. Ricci. “The strategy is highly specific to the antibody of interest and also programmable. We envision it would represent a new avenue to targeted therapy and diagnostics”, he concludes.

###

The research in this paper was conducted also by Gianfranco Ercolani and Malihe Mahdifar of the University of Rome Tor Vergata and by Jonathan Watson and Tom Brown Jr of the company ATDBio, Oxford, UK.

Media Contact
Francesco Ricci
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-20024-3

Tags: BiochemistryBiotechnologyChemistry/Physics/Materials SciencesMolecular BiologyNanotechnology/Micromachines
Share14Tweet9Share2ShareShareShare2

Related Posts

Deep Learning Tracks Neonatal Laryngoscope Insertion Depth

October 27, 2025

Revolutionizing Medical Image Retrieval with Differential Evolution

October 27, 2025

TDP-43 Loss Speeds Cell Damage in ALS Neurons

October 27, 2025

Exploring Smart, Secure Systems for Healthcare 5.0

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deep Learning Tracks Neonatal Laryngoscope Insertion Depth

Revolutionizing Medical Image Retrieval with Differential Evolution

TDP-43 Loss Speeds Cell Damage in ALS Neurons

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.