• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How to help the medicine go down: how UMass Amherst scientists are helping to engineer the next generation of medications

Bioengineer by Bioengineer
April 27, 2022
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

AMHERST, Mass. – Researchers at the University of Massachusetts Amherst recently announced that they have engineered a new class of material, called a “polyzwitterionic complex,” or “pZC,” which is able to both withstand the harsh acidic conditions of the stomach and then dissolve predictably in the comparatively gentle environment of the small intestine. This property means that pZCs could help revolutionize the delivery of medicines of all sorts, from familiar oral antibiotics to new classes of delicate protein therapeutics.

Inside the acidic environment of the stomach, pZCs remain in their associated state, but disassociate as they move into the intestine.

Credit: Khatcher Margossian, https://doi.org/10.1038/s41467-022-29851-y

AMHERST, Mass. – Researchers at the University of Massachusetts Amherst recently announced that they have engineered a new class of material, called a “polyzwitterionic complex,” or “pZC,” which is able to both withstand the harsh acidic conditions of the stomach and then dissolve predictably in the comparatively gentle environment of the small intestine. This property means that pZCs could help revolutionize the delivery of medicines of all sorts, from familiar oral antibiotics to new classes of delicate protein therapeutics.

“Despite the common experience of swallowing medications orally, there is a huge number of therapies that are not available orally,” says Khatcher Margossian, the lead author of the study and a candidate for a dual M.D./Ph.D. from Rush Medical College and the UMass Amherst Department of Polymer Science and Engineering, respectively. This is because there are many drugs that can’t withstand the stomach’s harshly acidic environment. Two ways around this problem are to either inject or implant medications; but in both cases, the pain, fear and potential side effects can limit a patient’s willingness to undergo treatment or to stick with the treatment plan through its full course. And even those drugs that are strong enough to withstand the stomach’s acid and make it through to the small intestine, where they can be absorbed into the bloodstream, often do not make it through entirely intact. “The doses of oral medications are usually larger than what our body really needs,” explains Murugappan Muthukumar, the Wilmer D. Barrett Professor in Polymer Science and Engineering at UMass Amherst and the study’s senior author. “This is because some of the medication decomposes in the stomach.”

“If there were some way to protect this precious therapeutic cargo,” says Margossian, “we could expand the library of medications that we can deliver orally.” Figuring out how to protect the precious cargo is exactly what Margossian, Muthukumar, and their colleagues have done.

The study, recently published in Nature Communications, details a new class of material, called a pZC, which forms through a process known as “complex coacervation”. In their system, two types of charged polymers, a polyzwitterion and a polyelectrolyte, associate to form a protective droplet inside of which medications can travel. The trick that the pZC has to perform is that it not only needs to be tough enough to withstand the highly acidic stomach environment, it also has to disassemble in the much gentler, neutral conditions of the small intestine.

Paradoxically, the key to the group’s success was not to strengthen the bonds between the polyzwitterion and polyelectrolyte but to weaken them. “Weakening the association between the two materials,” says Muthukumar, “allows us to control precisely when they come apart. If the bonds are too strong, then there’s no room to play.”

The group’s research is driven by the real-life needs of medical practitioners. Not only will these materials allow clinicians to more efficiently deliver the right dosages of drugs, but they will vastly increase the number of medications that can be taken orally. “This is a foundational technology that can alter how we treat disease,” says Margossian. “We hope that our work will make its way into clinicians’ hands and help them save lives.”

This research was supported by the National Science Foundation and the Air Force Office of Scientific Research.

Contacts: Murugappan Muthukumar, [email protected]

                 Daegan Miller, [email protected]



Journal

Nature Communications

DOI

10.1038/s41467-022-29851-y

Article Title

Coacervation in polyzwitterion-polyelectrolyte systems and their potential applications for gastrointestinal drug delivery platforms

Share12Tweet8Share2ShareShareShare2

Related Posts

Jon Agley

IU study explored how people’s beliefs impact overdose education and naloxone distribution programs

May 16, 2022
Pediatric ICU mortality

Children in underserved communities are at increased risk of being admitted to the pediatric ICU and of dying there; black children at most risk

May 16, 2022

CRISPR now possible in cockroaches

May 16, 2022

Excessive gestational weight gain increases long-term maternal cardiovascular risk

May 16, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccineUrbanizationUrogenital SystemViolence/CriminalsWeaponryVehiclesVirusUniversity of WashingtonVirologyWeather/StormsZoology/Veterinary ScienceVaccines

Recent Posts

  • Researchers reveal moral distress impact, actions to support doctors during pandemic
  • Exercise increases dopamine release in mice
  • IU study explored how people’s beliefs impact overdose education and naloxone distribution programs
  • Children in underserved communities are at increased risk of being admitted to the pediatric ICU and of dying there; black children at most risk
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....