• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

How small can they get? Polymers may be the key to single-molecule electronic devices

Bioengineer by Bioengineer
May 28, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Angewandte Chemie

Scientists at Tokyo Institute of Technology and University of Tsukuba demonstrate that polymers could play a key role in the fabrication of single-molecule electronic devices, allowing us to push the boundaries of the nanoelectronics revolution.

One of the most striking aspects of the electronic devices we have today is their size and the size of their components. Pushing the limits of how small an electronic component can be made is one of the main topics of research in the field of electronics around the world, and for good reasons. For example, the accurate manipulation of incredibly small currents using nanoelectronics could allow us to not only improve the current limitations of electronics, but also grant them new functionalities.

So, how far down does the rabbit hole go in the field of miniaturization? A research team led by Tomoaki Nishino, Associate Professor of the School of Science at Tokyo Institute of Technology (Tokyo Tech) is exploring the depths of this; in other words, they are working on single-molecule devices. “Ultimate miniaturization is expected to be realized by molecular electronics, where a single molecule is utilized as a functional element,” explains Nishino.

However, as one would expect, creating electronic components from a single molecule is no easy task. Functional devices consisting of a single molecule are hard to fabricate. Furthermore, the junctions (points of “electric contact”) that involve them have short lifetimes which makes their application difficult. Based on previous works, the research team inferred that a long chain of monomers (single molecules) to form polymers would yield better results than smaller molecules. To demonstrate this idea, they employed a technique called scanning tunneling microscopy (STM), in which a metallic tip that ends in a single atom is used to measure extremely small currents and their fluctuations that occur when the tip creates a junction with an atom or atoms at the target surface. Through STM, the team created junctions composed of the tip and either a polymer called poly(vinylpyridine) or its monomer counterpart, called 4,4′-trimethylenedipyridine, which can be regarded as one of components of the polymer. By measuring the conductive properties of these junctions, the researchers sought to prove that polymers could be useful for fabricating single-molecule devices.

However, to carry out their analyses, the team first had to devise an algorithm that allowed them to extract quantities that were of interest to them from the current signals measured by the STM. In short, their algorithm allowed them to automatically detect and count small plateaus in the current signal measured over time from the tip and the target surface; the plateaus indicated that a stable conducting junction was created between the tip and a single molecule on the surface.

Using this approach, the research team analyzed the results obtained for the junctions created with the polymer and its monomer counterpart. They found that the polymer yielded much better properties as an electronic component than the monomer. “Probability of junction formation, one of the most important properties for future practical applications, was much higher for the polymer junction,” states Nishino. In addition, the lifetimes of these junctions were found to be higher, and the current flowing through the polymer junctions was more stable and predictable (with less deviation) than that for the monomeric junctions.

The results presented by the research team reveal the potential of polymers as building blocks for electronics miniaturization in the future. Are they the key for pushing the boundaries of the achievable physical limits? Hopefully, time will soon tell.

###

Media Contact
Emiko Kawaguchi
[email protected]

Original Source

https://www.titech.ac.jp/english/news/2019/044388.html

Related Journal Article

http://dx.doi.org/10.1002/anie.201903717

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsIndustrial Engineering/ChemistryMaterialsMolecular PhysicsNanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MoS2/NC Composite: A Breakthrough Lithium Battery Anode

Digital Pathology Reveals Pancreatic Cancer Risks

Spin-Orbit Coupling Enables Optical Vortex Generation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.