• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, July 1, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How do bad kidneys lead to heart disease? Broken cellular clocks provide new clues

Bioengineer by Bioengineer
June 4, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers find how chronic kidney disease induces heart inflammation through white blood cells

IMAGE

Credit: Ohdo Lab/Kyushu University

Fukuoka, Japan–According to the Global Burden of Disease Study 2017, close to nine percent of the global population lives with some form of chronic kidney disease, or CKD. Not only does the condition affect renal function, CKD has long been associated with increased risk of cardiovascular disease.

Now, in a new study that could aid the development of therapeutic drugs to reduce these cardiac complications, researchers led by Kyushu University have found an underlying molecular pathway that can explain how chronic kidney disease induces heart failure.

Studying mice, the researchers found that a key driver is the dysfunction of a type of white blood cell called a monocyte. The dysfunction is caused by increased levels of vitamin A and its binding protein–a common symptom of chronic kidney disease–breaking a well-known genetic pathway: the circadian clock.

The circadian clock is one of the most indispensable biological functions in living organisms. Common understanding of the pathway is that it controls our sleep patterns. However, the circadian clock plays a much larger role, affecting blood pressure, metabolic rate, and even hormone levels. In fact, nearly 10% of our genes are directly influenced by the circadian clock.

These properties made it a natural target for Shigehiro Ohdo, professor of Kyushu University’s Faculty of Pharmaceutical Sciences, and his team for investigating the causes of chronic kidney disease-induced heart inflammation and fibrosis.

“We found that mice with a mutated Clock gene–one of the main regulators of the circadian clock–have decreased symptoms of heart problems related to chronic kidney disease, despite having high blood pressure,” explains Yuya Yoshida, one of the first authors of the study published in the journal Nature Communications.

To search for the underlying cause of this protective effect, the team looked for abnormalities in genes that connect Clock and kidney dysfunction.

“Our investigation led us to find that a protein called ‘G protein-coupled receptor 68,’ or GPR68, produced in monocytes was playing a key role. GPR68 is known to increase the production of proteins that cause inflammation, and more importantly, it is regulated by the Clock gene,” states Naoya Matsunaga, another author of the study.

One sign of kidney dysfunction is elevated levels of vitamin A and its binding protein, two molecules that are usually carefully controlled. The researchers found that this elevation disrupts the normal activity of the circadian clock in monocytes, which in turn over-express GPR68.

These high-GPR68-expressing monocytes then infiltrate the heart and cause inflammation and fibrosis. This explains why mice with defective Clock genes have less severe CKD-induced heart problems: there is no Clock gene to produce GPR68.

“Our study reveals a previously unknown role of monocytic clock genes in CKD-induced heart failure,” concludes Ohdo. “The findings will help us develop therapeutic drugs such as ones targeting GPR68. We also can investigate better treatments for abnormal vitamin A accumulation in the blood.”

###

For more information about this research, see “Alteration of circadian machinery in monocytes underlies chronic kidney disease-associated cardiac inflammation and fibrosis,” Yuya Yoshida, Naoya Matsunaga, Takaharu Nakao, Kengo Hamamura, Hideaki Kondo, Tomomi Ide, Hiroyuki Tsutsui, Akito Tsuruta, Masayuki Kurogi, Michio Nakaya, Hitoshi Kurose, Satoru Koyanagi, and Shigehiro Ohdo, Nature Communications (2021).
https://doi.org/10.1038/s41467-021-23050-x.

Media Contact
Raymond Kunikane Terhune
[email protected]

Original Source

https://www.kyushu-u.ac.jp/en/researches/view/212

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-23050-x

Tags: BiochemistryCardiologyCell BiologyGeneticsImmunology/Allergies/AsthmaInternal MedicineMedicine/HealthUrogenital System
Share12Tweet8Share2ShareShareShare2

Related Posts

Structural Changes of DGIST-4 and Electron Transfer Process

The formation process of unstable unknown radical states visualized clearly for the first time!

July 1, 2022
Rotation Signature of Distant Galaxy Hints at Early Formation Epoch

Capturing the onset of galaxy rotation in the early universe

July 1, 2022

Study shows HIV speeds up body’s aging processes soon after infection

July 1, 2022

When medicine is not enough for schizophrenia and psychosis

June 30, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesVirusViolence/CriminalsVehiclesWeather/StormsUniversity of WashingtonUrbanizationVirologyWeaponryVaccineZoology/Veterinary ScienceUrogenital System

Recent Posts

  • Putting the brakes on a bacterium that is a major cause of GI distress
  • Hearing better with skin than ears
  • The formation process of unstable unknown radical states visualized clearly for the first time!
  • Development of ultra-thin, high-efficiency piezoelectric elements that generate electricity from movements in daily life
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....