• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, February 25, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How cells keep growing even when under attack

Bioengineer by Bioengineer
August 5, 2020
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New findings on how stress leads to pathway diversion, putting resources into growth

IMAGE

Credit: UMass Amherst

AMHERST, Mass. – In an unexpected new finding, biochemists at the University of Massachusetts Amherst report observing that a damage-containment system in stressed bacteria can become overrun and blocked, but that this leads to cells responding by turning on very different pathways to make sure that normal growth continues.

Rilee Zeinert, a doctoral student in the Molecular and Cell Biology Program and his advisor, professor Peter Chien, report on their recent experiments and discovery about how bacteria switch gears to respond to different stresses but still maintain normal cell functions like DNA replication in the recent issue of the Cell journal, Molecular Cell. Other contributing authors include Benjamin Tu and Hamid Baniasadi at the University of Texas Southwestern Medical Center.

Chien says that because all cells must maintain normal growth even during stressful conditions and all cells contain clean-up proteases that degrade used proteins and other waste, similar regulation may be at work in other biological responses. He suggests, “Cancer cells also are constantly growing under protein stress conditions, so understanding how cells in general take advantage of protease competition to respond to stress leads to tempting speculations that we can inhibit similar pathways to block uncontrolled growth.”

In bacteria, a protease known as Lon destroys damaged proteins to protect cells from their toxic consequences and degrades normal signaling proteins, as well. Stress that is toxic to proteins – causing misfolding, for example – prompts the bacteria not only to try to keep removing these damaged proteins, but to maintain processes like replicating DNA for normal growth. Zeinert studied the Lon protease and pathways it uses during cell stress, such as antibiotic attacks or extreme heat, to accomplish this.

In their new paper, the authors show that when bacteria are stressed, the increase in damaged proteins ends up temporarily swamping the Lon protease. This results in stabilization of signaling proteins that would normally be degraded by Lon, which sets off a cascade of responses, Chien explains.

He adds, “The misfolded proteins are canaries in the coal mines. When they build up so much that Lon is now blocked, the cells respond by turning on pathways needed to ensure growth.” In particular, the cells increase the amount of deoxynucleotides – the ‘DN’ of DNA – building blocks that are needed for DNA replication.”

Zeinert, Chien and colleagues discovered this new pathway unexpectedly when they were exploring the essential character of different genes that depend on the Lon protease. Chien recalls, “Rilee was using a new approach that looks at the fitness cost of each gene in different mutant backgrounds. Surprisingly, he found that loss of a normally essential deoxynucleotide synthesis gene was now tolerated in cells missing the Lon protease.”

This meant that by decreasing Lon activity, cells would compensate by making more deoxynucleotides, a result the researchers confirmed with metabolomics, a procedure that measures hundreds of chemicals in a cell at once, he adds.

Chien explains, “The metabolomics told us that there was a substantial shift in all the building blocks for DNA synthesis when Lon activity was compromised. At the same time, we had seen that when cells are stressed they also seem to make more of these molecules.” That connection led the researchers to determine that it was the damaged proteins arising from the stress causing a block of Lon activity that resulted in this response.

Chien, who is director of the Models to Medicine Center in the Institute of Applied Life Sciences at UMass Amherst, points out that this work was funded by the National Institute of General Medical Sciences in the form of a MIRA grant to Chien and the Chemistry-Biology Training Program, which also supported Zeinert. The MIRA program does not fund individual projects, but broad programs of basic discovery research, to encourage researchers to propose more long-term, innovative, creative projects and to worry less about short-term goals and results.

###

Media Contact
Janet Lathrop
[email protected]

Original Source

https://www.umass.edu/newsoffice/article/how-cells-keep-growing-even-when-under

Related Journal Article

http://dx.doi.org/10.1016/j.molcel.2020.07.011

Tags: BiologyCell BiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

A-maze-ing pheasants have two ways of navigating

February 25, 2021
IMAGE

Paleontologists discover new insect group after solving 150-year-old mystery

February 24, 2021

Tool that more efficiently analyzes ocean color data will become part of NASA program

February 24, 2021

Embracing our excremental selves

February 24, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    637 shares
    Share 255 Tweet 159
  • People living with HIV face premature heart disease and barriers to care

    81 shares
    Share 32 Tweet 20
  • Global analysis suggests COVID-19 is seasonal

    37 shares
    Share 15 Tweet 9
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologycancerChemistry/Physics/Materials SciencesMedicine/HealthTechnology/Engineering/Computer ScienceMaterialsGeneticsEcology/EnvironmentPublic HealthClimate ChangeInfectious/Emerging DiseasesCell Biology

Recent Posts

  • Chimpanzees and humans share overlapping territories
  • Allergy season starts earlier each year due to climate change and pollen transport
  • A-maze-ing pheasants have two ways of navigating
  • UM scientists achieve breakthrough in culturing corals and sea anemones cells
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In