• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, March 7, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How cell processes round up and dump damaged proteins

Bioengineer by Bioengineer
November 6, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UMass Amherst research chemists discover cells’ unexpected clean-up techniques

IMAGE

Credit: UMass Amherst/Strieter lab

AMHERST, Mass. – In a new paper with results that senior author Eric Strieter at the University of Massachusetts Amherst calls “incredibly surprising,” he and his chemistry lab group report that they have discovered how an enzyme known as UCH37 regulates a cell’s waste management system.

Strieter says, “It took us eight years to figure it out, and I’m very proud of this work. We had to develop a lot of new methods and tools to understand what this enzyme is doing.”

As he explains, a very large protease called a proteasome is responsible for degrading the vast majority of proteins in a cell; it may be made up of as many as 40 proteins. It has been known for more than 20 years that UCH37 is one of the regulatory enzymes that associates with the proteasome, he adds, “but no one understood what it was doing.”

It turns out that the crux of the whole process, he adds, is how complicated modifications in a small protein called ubiquitin can be. “In addition to modifying other proteins, ubiquitin modifies itself resulting in a wide array of chains. Some of these chains can have extensive branching. We found that UCH37 removes branchpoints from chains, allowing degradation to proceed.”

Writing this week in Molecular Cell, he and first author and Ph.D. candidate Kirandeep Deol, who led and conducted the experiments, with co-authors Sean Crowe, Jiale Du, Heather Bisbee and Robert Guenette, discuss how they answered the question. The work was supported by the NIH’s National Institute of General Medical Sciences.

This advance could eventually lead to a new cancer treatment, Strieter says, because cancer cells need the proteasome to grow and proliferate. “Many cancer cells are essentially addicted to proteasome function,” he points out. “Its cells produce proteins at such a fast rate that mistakes are made, and if these are not cleared out, cells can’t function. Since UCH37 aids in clearing out proteins, it could be a useful therapeutic target to add to the proteasome inhibitors that have already been successful in the clinic.”

To begin their years-long process, Strieter says, “we had to come up with a way to generate a wide variety of ubiquitin chains that would represent the potential diversity in a cell. Using that new library of ubiquitin chains allowed us to interrogate the activity of UCH37 in a controlled setting. That series of experiments gave us the first clue that this enzyme was doing something unique.”

Another new method they developed uses mass spectrometry to characterize the architecture of ubiquitin chains in complex mixtures. “This allowed us to see that the activity we discovered with our library of substrates was also present in a more heterogenous mixture,” Strieter says. Finally, the chemists used the CRISPR gene editing tool to remove UCH37 from cells to measure the impact of UCH37 on proteasome-mediated degradation in vitro and in cells.

This technique led to one more surprise. “Instead of acting as expected and opposing the degradation process, it turned out that UCH37 was removing branchpoints from ubiquitin chains to help degrade proteins,” Strieter says. “You would think that by removing the signal for degradation that degradation would be impaired,” he adds, “but it didn’t work that way.”

In future experiments, Strieter and colleagues hope to further explore the degradation process and learn in more detail how UCH37 manages to regulate cellular function.

###

Media Contact
Janet Lathrop
[email protected]

Original Source

https://www.umass.edu/newsoffice/article/how-cell-processes-round-and-dump-damaged

Related Journal Article

http://dx.doi.org/10.1016/j.molcel.2020.10.017

Tags: BiologyBiomechanics/BiophysicscancerCell Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Study reveals how egg cells get so big

March 5, 2021
IMAGE

Survey identifies factors in reducing clinical research coordinator turnover

March 5, 2021

New ‘split-drive’ system puts scientists in the (gene) driver seat

March 5, 2021

Online dating: Super effective, or just… superficial?

March 5, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    668 shares
    Share 267 Tweet 167
  • People living with HIV face premature heart disease and barriers to care

    84 shares
    Share 34 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangecancerMaterialsCell BiologyChemistry/Physics/Materials SciencesBiologyTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesPublic HealthEcology/EnvironmentMedicine/HealthGenetics

Recent Posts

  • “Magic sand” might help us understand the physics of granular matter
  • Study reveals how egg cells get so big
  • Survey identifies factors in reducing clinical research coordinator turnover
  • New ‘split-drive’ system puts scientists in the (gene) driver seat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In