• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 16, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

High-tech material in a salt crust

Bioengineer by Bioengineer
April 3, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Jülich researchers simplify the production of MAX phases and high-performance materials

IMAGE

Credit: Copyright: Forschungszentrum Jülich / Apurv Dash

MAX phases are viewed as promising materials for the future, for example for turbines in power plants and aircraft, space applications, or medical implants. A new method developed by scientists from Forschungszentrum Jülich now makes it possible to produce this desirable material class on an industrial scale for the first time: a crust of salt protects the raw material from oxidation at a production temperature of more than 1,000 degrees Celsius – and can then simply be washed off with water. The method, which was recently published in the journal Nature Materials, can also be applied to other high-performance materials.

MAX phases unite the positive properties of both ceramics and metals. They are heat resistant and lightweight like ceramics, yet less brittle, and can be plastically deformed like metals. Furthermore, they are the material basis of MXenes, a largely unexplored class of compound that are similar to the “miracle material” graphene and have extraordinary electronic properties.

“In the past, there was no suitable method for producing MAX phases in powder form, which would be advantageous for further industrial processing. This is why MAX phases have not played any practical role in industrial application so far,” explains Junior Professor Dr. Jesus Gonzalez-Julian, young investigators group leader at Forschungszentrum Jülich.

The salt strategy

MAX phases are produced at temperatures higher than 1,000 degrees Celsius. At such high temperatures, the materials would normally react with atmospheric oxygen and oxidize, which is why they are usually produced in a vacuum or in a protective atmosphere of argon. The Jülich method is astonishingly simple by comparison: the researchers encapsulate the raw material with a salt – potassium bromide – which melts during the production process. A vacuum or argon atmosphere for additional protection is no longer needed.

“A bath of molten salt thus protects the material and prevents it from coming in contact with atmospheric oxygen,” explains Apurv Dash, lead author of the study published in Nature Materials and doctoral researcher at Forschungszentrum Jülich.

At the same time, the salt acts as a separating agent: the components no longer bond together to form a compact solid, and allow the direct production of fine-grained powders. This is important because it avoids an additional long, energy- intensive milling process. As a positive side effect, the salt bath also reduces the synthesis temperature necessary to form the desired compound, which will additionally cut energy and production costs.

With just salt and water

Methods using molten salt have been used for the powder production of non-oxide ceramics for some time. However, they require a protective argon atmosphere instead of atmospheric air, which increases both the complexity and production costs.

“Potassium bromide, the salt we use, is special because when pressurized, it becomes completely impermeable at room temperature. “We have now demonstrated that it is sufficient to encapsulate the raw materials tightly enough in a salt pellet to prevent contact with oxygen – even before the melting point of the salt is reached at 735 degrees Celsius. A protective atmosphere is thus no longer necessary,” explains Apurv Dash.

As with many scientific discoveries a little bit of luck played its part in inventing the method: vacuum furnaces are scarce because they are so expensive and they take a lot of effort to clean. To produce his powder, the Jülich doctoral researcher therefore resorted to testing a normal air furnace – successfully!

The new method is not limited to a certain material. The researchers have already produced a multitude of different MAX phases and other high-performance materials, such as titanium alloys for bioimplants and aircraft engineering. As a next step, the scientists are now planning to investigate industrial processes with which these powders can be processed further.

###

Media Contact
Tobias Schlößer
[email protected]

Original Source

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2019/2019-04-03-molten-salt.html

Related Journal Article

http://dx.doi.org/10.1038/s41563-019-0328-1

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsResearch/DevelopmentSuperconductors/SemiconductorsTechnology TransferTechnology/Engineering/Computer Science
Share14Tweet8Share2ShareShareShare2

Related Posts

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    76 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Machine Learning Unveils PRMT5 Inhibitors’ Diversity and Stability

Unveiling Genetic Diversity in Soybean Cyst Nematodes

AI Predicts Tooth Extraction with Limited Imaging Data

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.