• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, June 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

High-speed photos shine a light on how metals fail

Bioengineer by Bioengineer
October 7, 2020
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By combining experimental and theoretical work, researchers discover what happens when metals are stretched to their yield point

IMAGE

Credit: Aalto University

How things deform and break is important for engineers, as it helps them choose and design what materials they’re going to use for building things. Researchers at Aalto University and Tampere University have stretched metal alloy samples to their breaking point and filmed it using ultra-fast cameras to study what happens. Their discoveries have the potential to open up a whole new line of research in the study of materials deformation.

When materials get stretched a bit, they expand, and when the stretching stops, they return to their original size. However, if a material gets stretched a lot, they no longer return back to their original size. This over-stretching is referred to as “plastic” deformation. Materials that have begun to be plastically deformed behave differently when they’re stretched even more, and eventually snap in two. Some materials – including the lightweight aluminium alloys used in high tech applications like cars and aircraft – start to deform unpredictably when they become plastically deformed. The specific problem the researchers were interested in solving is called the Portevin-Le Chatelier (PLC) effect, where bands of deformation in the material move as it gets stretched. The movement of these bands causes the unpredictable deformation, and researchers wanted to develop a better understanding of how they moved, to be able to better predict how these materials would deform. ‘There were models for how these materials deformed,’ said Professor Mikko Alava, the leader of the research group at Aalto, ‘but until now, they weren’t very useful.’

To develop the new model, the researchers used very high-speed cameras, illuminated using laser light, to photograph the samples. Once they gathered this data, they were able to see what theoretical models fit the data. They found that a model for the behavior of magnets, called the ABBM model, could be used to predict the behavior of the materials as they deformed really well. The ABBM model is well established in materials science for describing the change of magnetization in magnets. ‘The art of the theory of this work was realizing which parameters of the material aligned with the parameters in an evolved version of the ABBM model,’ said Professor Alava, ‘and then by gathering the large quantity of data that we did, we were able to show how the model could be used to predict deformation in these materials.’ The results are being published in Science Advances.

‘Until now the time resolution of the experiments has not been sufficient for comparison with this type of model.’ said Tero Mäkinen, doctoral candidate with the major responsibility for study. ‘The movement of the deformation bands has been studied previously, particularly in the material science community, but one really needs to see the fine detail to be able to show that the bands behave – in some sense – similarly to magnets.’

‘It is quite remarkable that two phenomena which are apparently so different — change of magnetization in magnets and propagation of deformation bands in alloys — can be described with the same, simple statistical physics model,’ says Associate Professor Lasse Laurson from Tampere University, who participated in the study.

The research has been a long time coming ‘I first came up with the general idea around 2015,’ explains Professor Alava, but now that the model has been shown to apply to the PLC effect in aluminium alloys, the group are interested in testing if it applies to a wider range of metal alloys. ‘There are several different types of PLC bands that can exist in materials, we’ve shown it for one type, and now we want to see if it applies to all of them.’

###

Media Contact
Mikko Alava
[email protected]

Original Source

https://www.aalto.fi/en/news/high-speed-photos-shine-a-light-on-how-metals-fail

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abc7350

Tags: Chemistry/Physics/Materials SciencesMaterialsMechanical EngineeringTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Reversible Control of Polymer Linear Conjugation

Reversible Control of Polymer Linear Conjugation

June 20, 2025
Robert Paton research

New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

June 19, 2025

Scientists Achieve Ultra-Precise Optical Clock Signal Transmission Through Multicore Fiber

June 19, 2025

Lanthanide–Carbon Triple Bond Trapped Inside Fullerene

June 19, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    161 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    71 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Organoid Model Reveals Residual Colorectal Cancer Stem Cells

Terahertz Spectroscopy Maps Buried PN Junction Depths

Revolutionizing Rehabilitation: Virtual Reality Offers New Hope for Stroke Survivors to Recover Movement

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.