• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, June 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

High school student researchers find new brain tumor drug targets using AI

Bioengineer by Bioengineer
May 2, 2023
in Cancer
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Three high school students – Andrea Olsen from Oslo, Norway; Zachary Harpaz from Boca Raton, Florida; and Chris Ren from Shanghai, China – co-authored a paper using a generative artificial intelligence (AI) engine for target discovery from Insilico Medicine (“Insilico”) called PandaOmics to identify new therapeutic targets for glioblastoma multiforme (GBM). GBM is the most aggressive and common malignant brain tumor, accounting for 16% of all primary brain tumors. The findings were published on April 26 in the journal Aging.

Students Use Insilico Medicine's AI Platform to Find Targets for Glioblastoma and Aging

Credit: Insilico Medicine

Three high school students – Andrea Olsen from Oslo, Norway; Zachary Harpaz from Boca Raton, Florida; and Chris Ren from Shanghai, China – co-authored a paper using a generative artificial intelligence (AI) engine for target discovery from Insilico Medicine (“Insilico”) called PandaOmics to identify new therapeutic targets for glioblastoma multiforme (GBM). GBM is the most aggressive and common malignant brain tumor, accounting for 16% of all primary brain tumors. The findings were published on April 26 in the journal Aging.

Olsen, a student at Sevenoaks School in Kent, UK, began interning at Insilico Medicine in 2021, after discovering her interest in neurobiology and technology. For the current paper, the fifth scientific paper she has co-authored before turning eighteen, she and other researchers used PandaOmics to screen datasets from the Gene Expression Omnibus repository maintained by the National Center for Biotechnology Information and found new therapeutic targets implicated for treating both aging and glioblastoma multiforme. 

Ren, a student at Shanghai High School International Division, has an interest in biology and biomarkers and joined them in the summer of 2022.

While there would seem to be a clear connection between aging and cancer, Olsen says their findings were more nuanced. “Sometimes, instead of aging, the body switches to cancer mechanisms, which was really interesting to discover.” She hypothesized that “the body is trying to preserve itself in a way that it is switching back to embryonic processes of cell division.” GBM is caused by a genetic mutation that leads to uncontrolled growth of glial cells, or cells that surround neurons in the brain. Even with existing therapies, the median survival for GBM patients is only 15 months. 

Harpaz, a student at Pine Crest School in Ft. Lauderdale, had an early interest in computer science and AI and soon developed a passion for biology as well. “I wanted to combine my two favorite topics, computer science and biology, into what I think is the most interesting field of biology – aging research,” Harpaz says. He discovered generative AI drug discovery company Insilico Medicine whose founder and CEO, Alex Zhavoronkov, PhD, connected him with Olsen. The two young researchers began collaborating on the glioblastoma project and ultimately presented findings at the Aging Research and Drug Discovery (ARDD) conference in Copenhagen, where they together launched the Youth Longevity Association (TYLA).

In this latest paper, the three teens used PandaOmics to analyze the genes and identified three that were strongly correlated with both aging and glioblastoma and could serve as potential therapeutic targets for new drugs. 

“We selected the genes that were overlapped to be highly correlated in 11 of the 12 datasets, and we split our data into young, middle aged, and senior groups,” said Harpaz. “We mapped this to the importance of the gene expression to survival.” After identifying two genetic targets for glioblastoma and aging – CNGA3 and GLUD1 – they cross-referenced their findings with earlier findings from Insilico around genes strongly correlated with aging and identified a third target – SIRT1.  

“I learned a lot about conducting a research project,” said Ren, who helped review the three targets. “The PandaOmics platform really made the project accessible to me. As a high school sophomore, I did not have sufficient experience for advanced research and analysis, however, I was still able to navigate the PandaOmics platform after a brief period of training to process and compare datasets of glioblastoma.”

The students say they are eager to continue their studies in AI and biology into college and to move the GBM research forward from target discovery to drug development. 

“The best way to take this research further is going to be using Insilico’s Chemistry42 software, where we can take the targets we identified through PandaOmics and generate small molecules, potential drugs, with these targets that have the potential to treat glioblastoma and aging at the same time,” says Harpaz. 

Prior to her internship at Insilico, Olsen says: “I never knew that AI could be so helpful in finding completely new therapeutic targets. For me, that was an incredible opportunity to dive into the field of research, aging, longevity, and neuroscience. It really kick-started my entire career.” 

“I am truly impressed by the commitment of these young researchers,” says Zhavoronkov. “I hope their work will inspire other young people excited about science and technology to look at how they can use AI tools to discover new targets and treatments for both aging and disease.”

 

About Insilico Medicine

Insilico Medicine, a clinical-stage end-to-end artificial intelligence (AI)-driven drug discovery company, connects biology, chemistry, and clinical trials analysis using next-generation AI systems. The company has developed AI platforms that utilize deep generative models, reinforcement learning, transformers, and other modern machine learning techniques to discover novel targets and to design novel molecular structures with desired properties. Insilico Medicine delivers breakthrough solutions to discover and develop innovative drugs for cancer, fibrosis, immunity, central nervous system (CNS), and aging-related diseases.

For more information, visit www.insilico.com  



Journal

Aging-US

Method of Research

Data/statistical analysis

Article Title

Identification of dual-purpose therapeutic targets implicated in aging and glioblastoma multiforme using PandaOmics – an AI-enabled biological target discovery platform

Article Publication Date

26-Apr-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Dr. Alex Herrera

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

June 4, 2023
Ana Oaknin, Principal Investigator of the Vall d’Hebron Institute of Oncology’s (VHIO) Gynecological Malignancies Group

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

June 3, 2023

ASCO: Targeted therapy induces responses in HER2-amplified biliary tract cancer

June 3, 2023

For advanced, HER2-amplified bile duct cancers, antibody treatment trial shows promising results

June 2, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Carbon-based stimuli-responsive nanomaterials: classification and application

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In