• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

High blood pressure and salt, anti-aging factor Klotho key

Bioengineer by Bioengineer
August 19, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Copyright: © 2020, American Society for Clinical Investigation

High blood pressure is often called a silent killer because it is the biggest risk factor for the most death and disability worldwide including heart disease and stroke, but presents no symptoms as a warning indicator. Many elderly people have high blood pressure that is difficult to treat, and good preventative methods and appropriate markers have not been elucidated.

It has been known that high salt intake causes hypertension, but its exact mechanism was not understood until this study which found for the first time that Klotho deficiency, an anti-aging factor produced in the kidneys causes aging-associated hypertension through high salt intake.

Klotho is an anti-aging protein that acts as a hormone and is secreted into the blood from the kidneys. Its presence decreases with age causing the vascular and arterial system to stiffen. A recent study had shown the inverse relationship between the Klotho concentration and BP salt sensitivity. Hypertension is caused by excessive intake of salt, but the sensitivity of blood pressure to salt varies from individual to individual, and highly sensitive people are more likely to have high blood pressure.

In general, young people are less sensitive and are unlikely to develop hypertension, whereas older people are more sensitive to salt and are likely to develop hypertension. However, the mechanism of increased salt sensitivity with aging was unknown. Therefore, the research group first confirmed that salt sensitivity increased in aged mice, and revealed that the cause is that the blood concentration of the anti-aging factor Klotho protein decreases with age. Furthermore, the group clarified the molecular mechanism Wnt5a-RhoA pathway for the first time. The results showed that Klotho supplementation could prevent the development of hypertension, and Klotho levels could be a predictive marker for the development of hypertension.

Corresponding author and Specially Appointed Professor Toshiro Fujita of Shinshu University School of Medicine and Research Center for Social Systems, and Division of Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo states that it took time, “to elucidate the molecular mechanism of salt-sensitive hypertension with aging. Although Klotho deficiency was known to activate Wnt signaling, the detailed mechanism by which Wnt activation causes vasoconstriction was unknown. We found that the Wnt signal has two pathways, the canonical pathway which was understood as significant in oncological research, but it took time to demonstrate that the Wnt-RhoA pathway of the non-canonical pathway causes vasoconstriction in cell experiments and mouse experiments.”

In experiments using aged mice and cells, abnormal activation of the above pathway could be reversed by supplementation with Klotho protein. As a result, it was possible to establish that the cause of salt-sensitive hypertension due to aging is Klotho protein decline.

The results of this experiment showed that Klotho supplementation could prevent the development of hypertension in the elderly and that Klotho levels could be a predictive marker for the development of hypertension. Trials for human verification is currently underway. Aging, a universal phenomenon causes not only hypertension but dementia and frailty, and impairs the healthy life expectancy of individuals. The aging-related phenomenon of Klotho protein deficiency may be related to the onset of dementia and sarcopenia, or the loss of muscle-mass and usage associated with aging. Its onset mechanism is currently under investigation.

###

For more information, please read the paper, Salt causes again-associated hypertension via vascular Wnt5a under Klotho deficiency in The Journal of Clinical Investigation.

Acknowledgments:

This work was supported by Japan Society for the Promotion of Science KAKENHI (grants 18K08028, 15H05788, 15H02538, and 18K19533) and Japan Agency for Medical Research and Development-Advanced Research and Development Programs for Medical Innovation (AMED-CREST) (grant JP16gm0510009).

Media Contact
Hitomi Thompson
[email protected]

Tags: CardiologyMedicine/HealthStroke
Share16Tweet10Share3ShareShareShare2

Related Posts

Impact of TYG on Pregnancy Diabetes in American Women

September 22, 2025
All-D-Peptide Disassembles α-Synuclein Fibrils Directly

All-D-Peptide Disassembles α-Synuclein Fibrils Directly

September 22, 2025

Bispecific Affitoxin Targets HPV, Enhances Cervical Cancer Therapy

September 22, 2025

Impact of Certified Lactation Consultants in US Clinics

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of TYG on Pregnancy Diabetes in American Women

All-D-Peptide Disassembles α-Synuclein Fibrils Directly

Unveiling Toxocara canis Excretory-Secretory Products’ Impact

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.