• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Here’s something that will raise your blood pressure

Bioengineer by Bioengineer
November 1, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Tsukuba-led study shows that the apelin receptor and the α1A-adrenergic receptor work in a coordinated manner to control contraction of blood vessels by modulating the function of vascular smooth muscle cells

IMAGE

Credit: The Japanese Biochemical Society


Tsukuba, Japan – Many questions remain about the mechanisms that control blood pressure, particularly in relation to hypertension. Among the factors involved in regulation of blood vessel behavior, the apelin receptor (APJ) has been presumed to play an important role in the contraction of blood vessels; however, this was not verified in vivo until now.

In a new study published in the Journal of Biochemistry, a research team led by experts from the University of Tsukuba investigated the activity of APJ, a membrane receptor that is commonly expressed in cardiovascular tissue, such as blood vessels and the heart, and found that APJ was closely associated with hypertension (increased blood pressure) through effects on vascular smooth muscle cells in laboratory mice.

Although prior experiments indicated that APJ might be related to hypotension (lower blood pressure), those experiments did not use vascular smooth muscle cells, which are the primary cells that express APJ. In this study, the researchers overexpressed APJ in vascular smooth muscle cells, so that its levels were much higher than in physiologically normal mice. This allowed the researchers to specifically assess the effects of activating APJ in the vascular smooth muscle cells of those mice.

“Transgenic mice that overexpressed APJ in vascular smooth muscle cells showed transient and intense elevation of blood pressure due to APJ activation through apelin injection,” says Akiyoshi Fukamizu, corresponding author on the study. “This was consistent with the vasoconstriction–blood vessel contraction–present in some types of endothelial dysfunction.”

In the study, the researchers found that activation of APJ in the presence of noradrenaline or phenylephrine, known mediators of vasoconstriction, led to further vasoconstriction. This suggested a potential synergistic effect with the target of noradrenaline and phenylephrine, the α1A-adrenergic receptor.

“Our analyses revealed that vasoconstriction was prominent in transgenic mice with activated APJ, so we tested whether vasoconstriction would be reduced by the removal of α1A-adrenergic receptor from those mice,” says Junji Ishida, author on the study. “We found that vasoconstriction was greatly reduced by the loss of α1A-adrenergic receptor, despite the high levels of activated APJ in those mice.”

Furthermore, the researchers showed that APJ and α1A-adrenergic receptor physically interacted within cells in laboratory assays, which suggested that this direct interaction may be responsible for the vasoconstriction observed in the mice. The results of this study may help to understand the mechanisms that control blood pressure and support the development of therapies for conditions such as vascular stenosis and vasospasm.

###

Media Contact
Naoko Yamashina
[email protected]
81-298-532-066

Related Journal Article

http://dx.doi.org/10.1093/jb/mvz071

Tags: CardiologyCell BiologyEndocrinologyInternal MedicineMedicine/HealthPhysiologyStroke
Share17Tweet11Share3ShareShareShare2

Related Posts

Link Between AIP and T2DM in NAFLD Patients

October 2, 2025

Probiotics Alleviate Ovarian Angiogenesis in PCOS Models

October 2, 2025

Gene Variants Linked to Antipsychotic-Induced Movement Disorders

October 2, 2025

Brain Activity Changes in Epilepsy and Cognitive Impairment

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    69 shares
    Share 28 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Link Between AIP and T2DM in NAFLD Patients

Probiotics Alleviate Ovarian Angiogenesis in PCOS Models

Gene Variants Linked to Antipsychotic-Induced Movement Disorders

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.