• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Helping the body’s ability to grow bone

Bioengineer by Bioengineer
June 24, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Portsmouth

For the first time, scientists have been able to study how well synthetic bone grafts stand up to the rigors and ‘strains’ of life, and how quickly they help bone re-grow and repair.

Researchers led by Dr Gianluca Tozzi, at the University of Portsmouth, are the first to examine the strains between bone and graft from animal models in 3D and in microscopic detail.

Dr Tozzi hopes this window on to living bone grafts will help scientists find ways to improve the body’s ability to regrow its own bone, and more chance surgeons can predict the success of a synthetic graft.

He said: “Every three seconds a person breaks a bone due to increased bone fragility. Fragile bones break easily and are also more difficult to repair, particularly when the defect area is extended. It’s vital we understand what is happening where bone meets graft so we can better engineer sophisticated replacement materials.

“Bones are very complex biological tissues and a synthetic bone substitute needs to have specific requirements to allow blood supply and encourage new bone growth.

“In this sense, the new generation of synthetic grafts have the potential to be resorbed by the body in time, allowing gradual bone regeneration in the defect site. However, biomaterials that degrade too quickly don’t allow enough time for the new bone to grow, and grafts that degrade too slowly can cause mechanical instability to the implantation site. It’s important to get it right.”

Millions of people a year in the UK are given a bone graft. They’re commonly used in the spine, hip, knee and ankle. Their role is bridge gaps in a broken bone that are too large for the bone to close on its own. They’re also used in dental implants, to help teeth attach to the jawbone.

Some grafts can be made using a fragment of the patient’s own bone or other sources, but this is more invasive and can cause adverse reactions. Therefore, it’s becoming increasingly common for grafts to be made by synthetic materials, including glass, ceramics and even, in very small joints, plaster of Paris.

Dr Tozzi and colleagues have been using synchrotron X-ray computed tomography (SR-XCT) at the Diamond Light Source and in lab-based systems at the Zeiss Global Centre at the University of Portsmouth to better understand the performance of graft materials and their ability to promote bone healing.

In a recently published study in ACS Biomaterials Science & Engineering, they examined the micromechanics and microdamage evolution of four different bone-biomaterial systems combining high-resolution synchrotron tomography, in situ mechanics and digital volume correlation.

Dr Tozzi said: “It’s essential we are able to look at the interface between bone and graft and judge their load-bearing capability in order to understand both biological integration and structural integrity of the intervention.

“By carrying out time-lapse experiments of such constructs, we could observe damage progression and see, for the first time, how strain could be used to understand and potentially predict clinical outcome of biomaterials in a living body, improving our knowledge significantly.”

###

Media Contact
Glenn Harris
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsbiomaterials.8b01044

Tags: BiotechnologyMedicine/HealthSurgeryTransplantation
Share12Tweet8Share2ShareShareShare2

Related Posts

Racial Disparities in Anticoagulant Use for Atrial Fibrillation

October 5, 2025

ICU Nurses’ Perspectives on End-of-Life Care

October 5, 2025

Exchange Transfusion Impact on Severe Infant Pertussis

October 5, 2025

Smyd3 Loss Boosts WAT Browning via PPARγ Enhancement

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Racial Disparities in Anticoagulant Use for Atrial Fibrillation

ICU Nurses’ Perspectives on End-of-Life Care

Exploring Splicing Patterns in Medicinal Rheum Palmatum

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.