• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Heart attack modeled with human stem cells

Bioengineer by Bioengineer
November 7, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Toward the development of individual model of ischemic heart disease

IMAGE

Credit: ©2019 Okayama University


Researchers at Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences developed a model of myocardial infarction using cardiomyocytes differentiated from human induced pluripotent stem cells.

The journal Biochemical and Biophysical Research Communications published the study, with Ken Takahashi, Ph.D., as corresponding author, and Wei Heng, MSc., a graduate student in the Naruse Lab, as first author.

To date, laboratory animals such as mouse have been used to model diseases including myocardial infarction. However, there have been concerns about difference in characteristics of cardiomyocytes e.g. heart rate and action of drugs, based on the difference of gene expression between laboratory animals and human.

Using this model, researchers can evaluate the extent of myocardial tissue damage by microscope morphologically, and by measuring injury-marker proteins and analyzing contractility and its synchroneity from recorded movie quantitatively. Further analysis revealed that gene expression of interleukin-8, an inflammation marker known to increase in acute myocardial infarction, increased in this model.

“This myocardial infarction model will contribute to the development of preventive/therapeutic medicine more effective to human even without sacrificing animals,” said Ken Takahashi, Ph.D., assistant professor in the university and lead author of the study.

###

Okayama University

As one of the leading universities in Japan, Okayama University aims to create and establish a new paradigm for the sustainable development of the world. Okayama University offers a wide range of academic fields, which become the basis of the integrated graduate schools. This not only allows us to conduct the most advanced and up-to-date research, but also provides an enriching educational experience.

Media Contact
Takahashi Ken
[email protected]

Original Source

http://www.okayama-u.ac.jp/user/med/phy2/album/album19/191014.html

Related Journal Article

http://dx.doi.org/10.1016/j.bbrc.2019.09.119

Tags: BiologyBiomedical/Environmental/Chemical EngineeringCardiologyCell BiologyMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

ACSS2 Enhances Ovarian Cancer Cell Growth in Hypoxia

October 31, 2025

Empowering Physicians: Climate Change Advocacy Skills Workshop

October 31, 2025

Multi-Omics Unveils Glycolytic Traits in Lung Cancer

October 31, 2025

Assessing Assistance Needs in Home-Dwelling Seniors

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Method Predicts Protein-DNA Binding Sites Efficiently

ACSS2 Enhances Ovarian Cancer Cell Growth in Hypoxia

Empowering Physicians: Climate Change Advocacy Skills Workshop

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.