• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Hair in ‘stress’: Analyze with care

Bioengineer by Bioengineer
March 12, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Common hormone analysis in animal hair can lead to overestimated cortisol levels

IMAGE

Credit: Jan Zwilling


Similar to humans, wild animals’ reaction to disturbance is accompanied by releasing hormones, such as cortisol. To understand the impact of various “stress” factors – for example, competition for food, encounters with predators, or changing environmental conditions – on wildlife, scientists first need to determine the baseline levels of relevant hormones for each species. Researchers from the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) now uncovered possible pitfalls of the commonly used hormone analysis method that overestimate concentrations of cortisol and thus lead to overstated conclusions. They investigated whether glucocortiocoid hormones deposited in animal hair can be reliable biomarkers to indicate the impact of disturbances. The source of errors in the commonly used antibody-based enzyme immunoassays (EIA) method is described in a recently published article in the scientific journal “Conservation Physiology“.

Scientists led by Prof. Katarina Jewgenow, head of the Department of Reproduction Biology at Leibniz-IZW, conducted a comparative analysis on the hair samples from six mammalian species: Egyptian mongoose (Herpestes ichneumon), Iberian lynx (Lynx pardinus), cheetah (Acinonyx jubatus), spotted hyena (Crocuta crocuta), Asiatic black bear (Ursus thibetanus), and Alpine marmot (Marmota marmota). They measured the concentration of the “stress” hormone cortisol in hair extracts using the widely applied method of antibody-based enzyme immunoassays (EIA). This method is based on the ability of an antibody to recognize a three-dimensional molecule structure specific to a particular hormone. Such antibodies will also bind to closely related molecules which express similar structures. Usually such “group”-specific antibodies are very useful for wildlife species – where the relevant “stress” hormone is often unknown – but it also means that the concentration of other substances might be measured that are irrelevant to the biological process under observation, in the case of “stress” hormones such as cortisol to a stressful situation.

To be certain that the natural hormone was extracted from mammalian hair the researchers compared the EIA results to a more comprehensive and precise procedure, a mass spectrometry analysis. They discovered significant discrepancies in the indicated hormone levels. The EIA overestimated the concentration of cortisol by up to ten times. Further biochemical analysis showed that this overestimate was not connected with any substance related to cortisol, but rather to unknown hair born molecules. For that reason they strongly recommend a careful validation of each EIA before using it to the analysis of hormones from hair samples. As it is already known that age, sex and time of the year might influence baseline hair cortisol level, information about age and sex of the individual and the sampling date should also be available.

In a previous study Leibniz-IZW doctoral student Alexandre Azevedo analysed hair samples of Egyptian mongooses (Herpestes ichneumon) from seven provinces of Portugal. He and his colleagues wanted to know whether the successful reintroduction of the Iberian lynx to Portugal is a stressful influence on the mongoose population as the Iberian lynx is a direct food competitor to the mongoose, but lacked a suitable method.

Collecting hair samples is currently frequently suggested as a non-invasive way of assessing “stress” levels as they can be collected without disturbing the animal. “Taking blood samples to measure cortisol concentrations in the serum itself causes considerable stress. Cortisol metabolites can also be detected in faeces, but finding out which individual defecated is quite complicated in free-ranging animals unless the defecation was actually witnessed by the observer”, says Jewgenow. “In contrast, hair samples are often obtained in a minimally invasive way using ‘hair-traps’ which are usually installed to collect samples for genetic analyses from wildlife population.” Now such samples can also be used to determine the concentration of cortisol in hair provided the analytical method has been previously validated.

###

Media Contact
Prof. Dr. Katarina Jewgenow
[email protected]
49-305-168-611

Original Source

https://www.fv-berlin.de/en/info-for/the-media-and-public/news/wissenschaftsteam-deckt-fehlerquelle-bei-der-messung-von-stress-hormonen-in-tierhaaren-auf

Related Journal Article

http://dx.doi.org/10.1093/conphys/coaa009

Tags: BiochemistryBiologyPhysiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Protective Coating for Spacecraft in Development by Engineers

October 20, 2025
blank

Scientists Uncover Life’s Building Blocks in Ice Surrounding a Forming Star in Nearby Galaxy

October 20, 2025

Copper-Catalyzed Asymmetric Cross-Coupling with Reactive Radicals

October 20, 2025

The Quantum Doorway Puzzle: Electrons Struggling to Find Their Exit

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1268 shares
    Share 506 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    301 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Linking HPV, EBV, Polyomaviruses to Thyroid Tumors

Research Confirms: Stimulating the Senses Soothes the Mind

Global Increase in Obesity-Linked Cancers Among Both Younger and Older Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.