• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Growing a cerebral tract in a microscale brain model

Bioengineer by Bioengineer
April 18, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo – It takes a lot of connections to create human intelligence. Brain function depends on contacts between multiple regions within the brain. To study how this connectivity is possible – and how it can go awry – international researchers led by The University of Tokyo have grown a working model of a cerebral tract in the lab.

The cortex is divided into areas of neurons with distinct roles, such as creating or processing speech, movement, vision, etc. These cortical areas communicate through the cerebral tracts, formed by bundles (fascicles) of thin and long extensions of nerve cells named axons. The Tokyo study, led by the university’s Institute of Industrial Science (IIS), invented a method to create nerve tissue mimicking cerebral tract. This could help answering questions about how long connections within the brain are formed, and ultimately, how the tracts integrate separate cognitive tasks into a unified intelligence.

Under the leadership of Yoshiho Ikeuchi, the team grew spheroids of neurons, mimicking the cerebral cortex, using induced pluripotent stem cells (iPSCs) of human. When two spheroids were placed at two ends of a microdevice that provided physical instructions, they began to extend axons toward each other along a narrow channel separating them.

“After 25 days, both tendrils of axons reached all the way down the channel, and the two cortical spheroids were connected,” says Ikeuchi. “We know this was a functional electrical connection, because if one spheroid was electrically stimulated, the other would respond after a short delay. This resembles the situation in a real brain, where distant regions communicate during cognition.”

Brain development is complex, and in fact the “cerebral tracts” only grew in the right circumstances. When one end of the microdevice was empty, axons still emerged from the neurons at the other end, but significantly less efficiently. Placing an object such as a glass bead at the empty end did nothing to improve fascicle growth.

“The spheroids promoting each other to grow fascicles is very interesting,” says Takaaki Kirihara, first author of the study in iScience. “It implies that opposing axons mutually guide each other, connecting two groups of neurons. This could help explain how reciprocal connections are formed between distant regions of the brain, sometimes even between different hemispheres.”

Although axons growing in a microdevice are by no means the same as a living brain, there is a clue that the tissue culture model was realistic. The gene L1CAM is known to be essential for cerebral tract formation. When L1CAM was knocked-down (suppressed) in the spheroids, many of the axons failed to assemble into a bundle. This suggests the model could be used to study not only normal brain tissue, but also developmental disorders of the cerebral tract.

In future, the group proposes to transcend the current setup by building a culture device that expands as the cortical spheroids grow–just as the skull gets bigger through childhood. For now, though, the results show that stem cells can be used to create realistic models of neurons, axons, and their coordinated growth. This opens the possibility of major insights into how the young brain is wired up.

###

The article, “A human iPS cell-derived tissue model of a cerebral tract connecting two cortical regions,” was published in iScience at DOI: 10.1016/j.isci.2019.03.012.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Media Contact
Yoshiho Ikeuchi
[email protected]

Related Journal Article

https://www.iis.u-tokyo.ac.jp/en/news/3095/
http://dx.doi.org/10.1016/j.isci.2019.03.012

Tags: BiologyBiomechanics/BiophysicsBiotechnologyCell BiologyDevelopmental/Reproductive BiologyGeneticsPhysiology
Share13Tweet8Share2ShareShareShare2

Related Posts

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Photoswitchable Olefins Enable Controlled Polymerization

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Periodontitis: A Diabetes Modifier in Older Atrial Fibrillation Patients

Comparing Point-of-Care and Lab Tests in Newborns

Thrombopoietin Boosts Aggressive EVI1+ AML Stem Genes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.