• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Groundbreaking lymphoma tumor model paves way for new therapies

Bioengineer by Bioengineer
March 29, 2023
in Cancer
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In recent years, innovative cancer drugs that target specific molecular drivers of the disease have been embraced as the treatment of choice for many types of cancer. But despite significant advances, there is still a lack of understanding about how the complex interactions between a tumor and its surrounding environment in the body affect cancer progression. This problem has become a well-known roadblock in making novel treatments effective for more people.

Groundbreaking Lymphoma Tumor Model Paves Way for New Therapies

Credit: Georgia Institute of Technology

In recent years, innovative cancer drugs that target specific molecular drivers of the disease have been embraced as the treatment of choice for many types of cancer. But despite significant advances, there is still a lack of understanding about how the complex interactions between a tumor and its surrounding environment in the body affect cancer progression. This problem has become a well-known roadblock in making novel treatments effective for more people.

Ankur Singh, professor in the George W. Woodruff School of Mechanical Engineering and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University led an international team of researchers in the development of a promising breakthrough for targeted cancer therapies.

The team bioengineered a synthetic tumor model to understand and then demonstrate how the tumor microenvironment impacts the effectiveness of targeted therapies for a specific type of lymphoma called Activated B Cell-like Diffuse Large B cell lymphoma (ABC-DLBCL). Their synthetic tumor model could change the game for designing and testing personalized cancer therapies. The research paper, which features an interdisciplinary team from institutions across the U.S. and around the world, was published in the journal Nature Materials.

A Cutting-Edge Tumor Model

Recent treatments for ABC-DLBCL that target specific molecular signals of the disease are in clinical trials. But, while the treatments have shown to be effective in lab testing (in vitro environments) and in mice (in vivo), they have proven less effective in humans, with over 60% of patients not responding.

“We wanted to understand how specific changes that happen in the microenvironment empower the lymphoma tumors to not respond to these drugs when administered in patients,” Singh said. “The ultimate goal is to build a patient-derived tissue model that represents the tumor and can be grown outside of the body, in order to truly understand the factors and conditions that control tumor behavior.”

To accurately test new therapies, a model tumor microenvironment should closely mimic the nuanced interactions that happen in a live tumor. But to understand those conditions, which can vary wildly from case to case, the researchers needed real patient data. 

The researchers examined more than 1,100 ABC-DLCBCL lymphoma patient samples to understand the molecular profiles of their tumors. For each sample, they used RNA sequencing and imaging to identify the composition, stiffness, and mechanical properties of the tumor tissue, along with other factors that play a role in how tumors grow and respond to treatment.

Combining what they learned from the patient data, the researchers designed a synthetic hydrogel-based model of the lymphoma tumor microenvironment. They bioengineered the model to have the specific qualities and characteristics seen in the microenvironments of the samples. Specifically, by modifying the hydrogel with cell-binding adhesive peptides and presenting immunological signals, they were able to recreate the intricate biological, chemical, and physical characteristics that are present in a live tumor microenvironment, including protein signals, tumor stiffness, and more. The customizable hydrogel proved to be supportive of tumor samples obtained from patients, a phenomenon that has not been previously demonstrated for lymphomas.

Combining Therapeutics

The team illustrated the viability of their model by testing how the tumors responded to a new type of inhibitor drug known as mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1 inhibitors) currently in human trials.

The researchers observed that, when being treated by MALT1, several tumor microenvironment factors related to the tumor cells — including T cell signal CD40 Ligand, collagen-like extracellular matrix, and the level of tissue stiffness — all empowered the tumor, helping the cancer cells resist responding to the new inhibitors even at high doses.

The researchers then sought a way to overcome the dampened tumor response by combining therapeutics that simultaneously suppress multiple aberrant oncogenic pathways in the same tumor cell. They found that when they used MALT1 and another inhibitor to target multiple pathways at the same time, they were able to promote more tumor death in the cells.

One of the major challenges is that tumors can engage multiple pathways in the cells to keep fueling the survival of tumor cells. However, the combination treatment was so powerful that, even in the presence of tumor microenvironment factors that supported tumor survival, they  could still be overcome by the combination of therapies.

To validate the results from synthetic tissues developed in lab, the researchers then implanted actual patient tumors in an immunocompromised mouse model to determine how the patient tumors responded to the new therapies.

“We live in a world where we can claim a lot based on in vitro treatments, but the obvious question is always what happens in vivo,” Singh said. “What’s amazing is that we predicted this exact result in our synthetic model.”  

Moving Forward

The researchers’ work clarifies the complex relationship between malignant ABC-DLCBL tumors and their dynamic surrounding environment, while highlighting the crucial importance of considering the tumor microenvironment when creating treatments that combine therapeutics.

The team’s work will help clinicians prioritize clinical trials of certain therapies and enable scientists to create more rational therapy combinations that could improve patient response rates to treatment. This is especially relevant for the potential of personalized treatment for lymphoma, as two individuals with the same cancer may benefit from different combinations and dosages of therapeutics.

A large portion of the patient samples used in creating the tumor models were provided by Emory through a collaboration with oncologist Jean Koff, one of the authors of the study.

“From a clinician’s standpoint, this work is very exciting because it exemplifies how findings from large genomic datasets may be translated into development of therapeutic strategies in lymphoma,” Koff said. “Singh’s cutting-edge organoid technology allows us to explore how patient-specific changes in the tumor microenvironment impact response to therapeutic agents, thus helping to deliver on the promise of precision medicine.”

The project further initiated a new partnership between teams at Georgia Tech and Emory and strengthened existing collaborations with Cornell Medicine. The teams will continue to work together to investigate molecular pathways that may be targeted to improve treatment outcomes for lymphoma patients.

The research comes at an important time in the field of drug testing. The FDA has begun to encourage alternatives to animal testing for pharmaceuticals. Singh’s powerful synthetic model that faithfully mimics real tumor environments is likely to be an example for other cancer researchers to follow for in vitro drug testing.

The research was funded by the National Institutes of Health, the National Cancer Institute, and the Wellcome Leap HOPE program.

 

Citation: Shah, S.B., Carlson, C.R., Lai, K. et al. Combinatorial treatment rescues tumour-microenvironment-mediated attenuation of MALT1 inhibitors in B-cell lymphomas. Nat. Mater. (2023).

DOI: https://doi.org/10.1038/s41563-023-01495-3

####

The Georgia Institute of Technology, or Georgia Tech, is one of the top public research universities in the U.S., developing leaders who advance technology and improve the human condition. The Institute offers business, computing, design, engineering, liberal arts, and sciences degrees. Its more than 46,000 students, representing 50 states and more than 150 countries, study at the main campus in Atlanta, at campuses in France and China, and through distance and online learning. As a leading technological university, Georgia Tech is an engine of economic development for Georgia, the Southeast, and the nation, conducting more than $1 billion in research annually for government, industry, and society.



Journal

Nature Materials

DOI

10.1038/s41563-023-01495-3

Method of Research

Experimental study

Subject of Research

Human tissue samples

Article Title

Combinatorial treatment rescues tumour-microenvironment-mediated attenuation of MALT1 inhibitors in B-cell lymphomas

Article Publication Date

16-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Chen-1

Protein-based nano-‘computer’ evolves in ability to influence cell behavior

May 26, 2023
Dr. Manel Esteller, Director of the Josep Carreras Institute and winner of the Admirables 2023 award for his career in biomedical research. Photo by Sonia Troncoso, Diario Médico

Dr. Manel Esteller receives the Admirables Award in Biomedical Research

May 26, 2023

Plants remove cancer causing toxins from air

May 26, 2023

ASCO23: ‘Safety & efficacy of the novel BRAF inhibitor FORE8394 in patients with advanced solid & CNS tumors’

May 25, 2023

POPULAR NEWS

  • the University of Haifa

    Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    34 shares
    Share 14 Tweet 9
  • The case for engineering our food

    73 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study finds distinct patterns of pre-existing brain health characteristics in stroke patients

New moms and dads left unprepared for parenthood by government health ‘failures’, report warns

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In