• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Green energy transition: Early and steady wins the race

Bioengineer by Bioengineer
December 4, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Aarhus University have modelled the decarbonisation of the sector-coupled European energy system using very high-resolution data. The results are clear: To reach climate-neutrality by 2050 we need solar energy; and lots of it

IMAGE

Credit: Ida Jensen, AU Photo

Researchers from Aarhus University have modelled the decarbonisation of the sector-coupled European energy system using very high-resolution data. The results are clear: To reach climate-neutrality by 2050 we need solar energy. And lots of it.

What’s the cheapest, easiest way to honour the Paris Agreement of limiting the global warming to 1.5 degrees Celsius? A clear and strong investment in wind and solar power. Starting now.

That’s the message in a new scientific paper published in Nature Communications, where Aarhus University researchers have modelled the decarbonisation of the sector-coupled European energy system using uninterrupted high-res hourly data for every European and Scandinavian country and network interconnectivity.

Using the university’s supercomputer, PRIME, the researchers have modelled how to modify the production of electricity, heating and transport sector energy, so to make sure that there’s enough of everything for every possible hour, even in the coldest weeks of winter.

“We ask the question of which energy strategy to employ in order to reach the 2050 goal. We have a ‘carbon budget’ – a maximum amount of CO2 we can emit – and how do we make sure, that by 2050 we reach climate-neutrality in the cheapest and most feasible way?” asks Assistant Professor Marta Victoria, an expert in photovoltaics (PV) and energy systems at the Department of Engineering, Aarhus University.

She continues:

“There are two scenarios: Early and steady or late and rapid. Our model clearly shows that the cost optimised solution is to act now. To be ambitious in the short term. And we find solar energy and onshore and offshore wind to be the cost optimised cornerstone in a fully decarbonised 2050 energy system.”

Marta Victoria highlights, that both paths require a massive deployment of wind and solar PV during the next 30 years.

The required installation rates are similar to historical maxima making the transition challenging, yet possible.

“It’s not an easy task,” she emphasises:

“In some years, we will have to install more than a 100 Gigawatts of solar PV and wind power, and to achieve full decarbonisation the CO2 prices will have to be a lot higher than today.”

The paper illustrates a slowly inclining CO2 price that maximises around 400 €/ton in the year 2050 – around 20 times higher than today’s prices. Needed, in order to favour the renewable transition, Marta states.

The model also includes hydro power and – to account for so-called ‘nightmare weeks’ –
a small amount of gas-based electricity and heating production plus energy storage facilities:

“District heating systems are efficient for very cold and critical periods where electricity demand and heating demand is high, but wind and solar energy production is low. Large hot water tanks discharge during those weeks. This way we make sure, that the future energy systems works for every possible scenario.”

###

The research has included every energy resource including nuclear energy, but optimised for cost and feasibility, the model clearly favours solar, wind and hydro. The research has been conducted in cooperation with researchers from Karlsruhe Institute of Technology and is part of the RE-INVEST project funded by Innovation Fund Denmark.

The paper is available at nature.com/ncomms.

Media Contact
Assistant Professor Marta Victoria
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-20015-4

Tags: Climate ChangeComputer ScienceEarth ScienceEnergy SourcesHydrology/Water ResourcesMechanical EngineeringResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Better diet and glucose uptake in the brain lead to longer life in fruit flies

January 16, 2021
IMAGE

Rapid blood test identifies COVID-19 patients at high risk of severe disease

January 15, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times

January 15, 2021

Howard University professor to receive first Joseph A. Johnson Award

January 15, 2021
Next Post
IMAGE

Huntsman Cancer Institute researchers identify promising drug combination for melanoma

IMAGE

β-AR agonist therapy puts the brakes on oral cancer progression

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeChemistry/Physics/Materials SciencesBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer ScienceMedicine/HealthEcology/EnvironmentMaterialsGeneticscancerPublic HealthCell Biology

Recent Posts

  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In