• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, May 19, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Good bacteria can temper chemotherapy side effects

Bioengineer by Bioengineer
May 26, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Naturally occurring gut bacteria can clean up chemo toxins in the body, study finds

IMAGE

Credit: Northwestern University

In the human gut, good bacteria make great neighbors.

A new Northwestern University study found that specific types of gut bacteria can protect other good bacteria from cancer treatments — mitigating harmful, drug-induced changes to the gut microbiome. By metabolizing chemotherapy drugs, the protective bacteria could temper short- and long-term side effects of treatment.

Eventually, the research could potentially lead to new dietary supplements, probiotics or engineered therapeutics to help boost cancer patients’ gut health. Because chemotherapy-related microbiome changes in children are linked to health complications later in life — including obesity, asthma and diabetes — discovering new strategies for protecting the gut is particularly important for pediatric cancer patients.

“We were really inspired by bioremediation, which uses microbes to clean up polluted environments,” said Northwestern’s Erica Hartmann, the study’s senior author. “Usually bioremediation applies to groundwater or soil, but, here, we have applied it to the gut. We know that certain bacteria can breakdown toxic cancer treatments. We wondered if, by breaking down drugs, these bacteria could protect the microbes around them. Our study shows the answer is ‘yes.’ If some bacteria can break down toxins fast enough, that provides a protective effect for the microbial community.”

The research will be published on May 26 in the journal mSphere.

Hartmann is an assistant professor of environmental biology at Northwestern’s McCormick School of Engineering. Ryan Blaustein, a former postdoctoral fellow in Hartmann’s laboratory, is the paper’s first author. He is now a postdoctoral fellow at the National Institutes of Health.

Although cancer treatments are life-saving, they also cause profoundly harsh and painful side effects, including gastrointestinal issues. Chemotherapies, in particular, can obliterate the healthy, “good” bacteria in the human gut.

“Chemotherapy drugs do not differentiate between killing cancer cells and killing microbes,” Hartmann said. “Microbes in your gut help digest your food and keep you healthy. Killing these microbes is especially harmful for children because there’s some evidence that disruption in the gut microbiome early in life can lead to potential health conditions later in life.”

Working with Dr. Patrick Seed, a professor of pediatrics and microbiology-immunology at the Northwestern University Feinberg School of Medicine, Hartmann’s lab learned from Raoultella planticola. Naturally occurring in the human gut in low abundances, Raoultella planticola can break down chemotherapy drug doxorubicin, which has been demonstrated in other research.

To test whether or not this breakdown effect could protect the entire microbiome, the team developed simplified microbial communities, which included various types of bacteria typically found in the human gut. The “mock gut communities” included bacteria strains (Escherichia coli and Klebsiella pneumoniae) that are good at breaking down doxorubicin, strains (Clostridium innocuum and Lactobacillus rhamnosus) that are especially sensitive to doxorubicin and one strain (Enterococcus faecium) that is resistant to doxorubicin but does not break it down.

The team then exposed these mock gut communities” to doxorubicin and found increased survival among sensitive strains. The researchers concluded that, by degrading doxorubicin, certain bacteria made the drugs less toxic to the rest of the gut.

Although the research highlights a promising new pathway for potentially protecting cancer patients, Hartmann cautions that translating the new findings into treatments is still far off.

“There are several eventual applications that would be great to help cancer patients — particularly pediatric patients — not experience such harsh side effects,” she said. “But we’re still far from actually making that a reality.”

###

Media Contact
Amanda Morris
[email protected]

Related Journal Article

http://dx.doi.org/10.1128/mSphere.00068-21

Tags: Biomedical/Environmental/Chemical EngineeringcancerGastroenterologyMedicine/HealthMicrobiologyPediatricsPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

A revolution in recycling

Recycling more precious metals from nuclear and electronic waste using the Picasso pigment, Prussian blue

May 19, 2022
Tom70-based transcriptional regulation of mitochondrial biogenesis and aging

Buck Scientist uncovers clues to aging in mitochondria

May 18, 2022

Scripps Research awarded $67 million by NIH to lead new Pandemic Preparedness Center

May 18, 2022

NIAID announces antiviral drug development awards

May 18, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVirologyVehiclesZoology/Veterinary ScienceVaccinesUrogenital SystemUrbanizationWeaponryVirusVaccineViolence/CriminalsWeather/Storms

Recent Posts

  • Recycling more precious metals from nuclear and electronic waste using the Picasso pigment, Prussian blue
  • Buck Scientist uncovers clues to aging in mitochondria
  • Scripps Research awarded $67 million by NIH to lead new Pandemic Preparedness Center
  • NIAID announces antiviral drug development awards
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....