• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Going the distance: Brain cells for 3D vision discovered

Bioengineer by Bioengineer
June 28, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Neurons in insect brains that compute 3D distance and direction found

IMAGE

Credit: Newcastle University, UK

In stunning images captured under the microscope for the first time, the neurons were found in praying mantises. The work is published in Nature Communications today.

In a specially-designed insect cinema, the mantises were fitted with 3D glasses and shown 3D movies of simulated bugs while their brain activity was monitored. When the image of the bug came into striking range for a predatory attack, scientist Dr Ronny Rosner was able to record the activity of individual neurons.

Dr Rosner, Research Associate in the Institute of Neuroscience at Newcastle University, is lead author of the paper. He said: “This helps us answer how insects achieve surprisingly complex behaviour with such tiny brains and understanding this can help us develop simpler algorithms to develop better robot and machine vision.”

The “3D neurons”

Praying mantises use 3D perception, scientifically known as stereopsis, for hunting. By using the disparity between the two retinas they are able to compute distances and trigger a strike of their forelegs when prey is within reach.
The neurons recorded were stained, revealing their shape which allowed the team to identify four classes of neuron likely to be involved in mantis stereopsis.

The images captured using a powerful microscope show the dendritic tree of a nerve cell – where the nerve cell receives inputs from the rest of the brain – believed to enable this behaviour.

Dr Rosner explains: “Despite their tiny size, mantis brains contain a surprising number of neurons which seem specialised for 3D vision. This suggests that mantis depth perception is more complex than we thought. And while these neurons compute distance, we still don’t know how exactly.

“Even so, as theirs are so much smaller than our own brains, we hope mantises can help us develop simpler algorithms for machine vision.”

The wider research programme which is funded by the Leverhulme Trust, is led by Professor Jenny Read, professor of Vision Science at Newcastle University. She says: “In some ways, the properties in the mantises are similar to what we see in the visual cortex of primates. When we see two very different species have independently evolved similar solutions like this, we know this must be a really good way of solving 3D vision.

“But we’ve also found some feedback loops within the 3D vision circuit which haven’t previously been reported in vertebrates. Our 3D vision may well include similar feedback loops, but they are much easier to identify in a less complex insect brain and this provides us with new avenues to explore.”

It’s the first time that anyone has identified specific neuron types in the brain of an invertebrate which are tuned to locations in 3D space.

The Newcastle team intend to further develop their research to better understand the computation of the relatively simple brain of the praying mantis with the aim of developing simpler algorithms for machine and robot vision.

###

Reference: A neuronal correlate of insect stereopsis. Ronny Rosner, Joss von Hadeln, Ghaith Tarawneh, Jenny C.A. Read. Nature Communications. http://dx.doi.org/10.1038/s41467-019-10721-z

Media Contact
Karen Bidewell
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-10721-z

Tags: BioinformaticsBiologyBiotechnologyCell BiologyEntomologyPhysiologyRobotry/Artificial IntelligenceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

Body Image and Internalization: A Tripartite Model Insight

November 14, 2025

Unifying Understanding of Endoplasmic Reticulum Exit Sites

November 14, 2025

Novel Fluorogenic Sensor Detects Hydrogen Peroxide Colorfully

November 14, 2025

Mitigating Matrix Effects in AAV Neutralization Assays

November 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Leap: AI Progresses at the Speed of Light

“‘Great Unified Microscope’ Enables Visualization of Structures from Micro to Nanoscale”

Breakthrough Theory Unveils New Insights into Molecular Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.