• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, May 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Glutamate plays previously unknown role in neuromuscular development

Bioengineer by Bioengineer
September 19, 2016
in Neuroscience
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Image of a neuromuscular junction. University at Buffalo and Johns Hopkins researchers have shown in mice that glutamate plays a key role in the muscle fiber development process that occurs at the neuromuscular junction. Credit: Society for Neuroscience
Image of a neuromuscular junction. University at Buffalo and Johns Hopkins researchers have shown in mice that glutamate plays a key role in the muscle fiber development process that occurs at the neuromuscular junction.
Credit: Society for Neuroscience

For decades, scientists thought acetylcholine was the only neurotransmitter responsible for controlling how muscles and nerves are wired together during development.

Turns out, they were wrong. Glutamate, the most common neurotransmitter in the brain, is also necessary.

Researchers at the University at Buffalo and Johns Hopkins University reported their findings with mice in the Journal of Neuroscience.

The team took a new approach to the old question of how the connections from the spinal cord to the muscles mature, says Kirkwood Personius, the paper’s lead author and a clinical associate professor of rehabilitation science in UB’s School of Public Health and Health Professions.

Each muscle is made of many individual muscle fibers and, in adults, each of those muscle fibers is contacted by a single motor neuron. However, this simple arrangement is not what you see at birth. Instead, each muscle fiber is contacted by as many as 10 nerves.

The process that allows one motor neuron to stay while all the others are retracted seems to be this, according to the researchers: the nerve that’s most effective in activating the muscle is the one that wins.

But what specifically occurs during the nerve’s firing that triggers the stabilizing of the winner and the withdrawal of the others? For many decades, it was assumed that the pruning process began with release of the neurotransmitter acetylcholine from the nerve. This seemed logical, the paper’s authors say, because motor neurons do indeed release lots of acetylcholine.

“However, we now have shown that an important transmitter is one that nobody had previously expected: it is glutamate,” said Personius, PT, PhD. “The nerves release a molecule that is converted into glutamate, and the glutamate then activates glutamate receptors, notably NMDA receptors, on the muscle.”

NMDA (N-methyl-D-aspartate) receptors are one of several types of molecules that respond to glutamate. They are especially important in the central nervous system controlling brain development, learning and synaptic plasticity. “Nobody thought NMDA receptors played any role in the innervation of muscle,” Personius said.

The researchers tested their hypothesis — that glutamate receptor activation modulates the development of the neuromuscular system — in several ways, each of which supported what they thought. In addition, they showed that the response of the muscle to glutamate is very strong at birth, but quickly disappears as mice mature.

“Our work restarts a field that was stuck because of the widespread conviction that the process depended on a single transmitter, acetylcholine,” said Susan Udin, PhD, a paper co-author and professor of physiology in UB’s Jacobs School of Medicine and Biomedical Sciences.

“This study opens up a wide range of experimental possibilities because so much is known from central nervous system studies about how NMDA receptors work. Our work opens up a possible understanding of why return of muscle function is often limited after peripheral nerve trauma.”

The same processes that control muscle fiber development tend to recur after peripheral injury in adults. Now, the research team is testing the hypothesis that the poor outcomes often seen after peripheral nerve trauma could be improved by manipulating NMDA receptors.

Story Source:

The above post is reprinted from materials provided by University at Buffalo. The original item was written by David J. Hill. Note: Content may be edited for style and length.

Journal Reference:

K. E. Personius, B. S. Slusher, S. B. Udin. Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination. Journal of Neuroscience, 2016; 36 (34): 8783 DOI: 10.1523/JNEUROSCI.1181-16.2016

The post Glutamate plays previously unknown role in neuromuscular development appeared first on Scienmag.

Share37Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial

    Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    91 shares
    Share 36 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    67 shares
    Share 27 Tweet 17
  • Scientists Discover New Electricity-Conducting Species, Honor Tribe in Naming

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Vacuolar Sugar Transporters Shape Plant Growth, Yield

Airborne Biomarker Engine Enables Open-Air Point-of-Care Detection

Airborne Biomarker Engine Enables Open-Air Point-of-Care Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.