• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Gladstone investigator receives NIH Director’s New Innovator Award

Bioengineer by Bioengineer
October 6, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Seth Shipman is recognized for his exceptionally creative research approach

IMAGE

Credit: Credit: Gladstone Institutes

SAN FRANCISCO, CA — The National Institutes of Health (NIH) has granted an NIH Director’s New Innovator Award to Seth Shipman, PhD, assistant investigator at Gladstone Institutes. This competitive award is reserved for early-career scientists with unusually creative ideas that hold the potential for exceptional impact.

For Shipman, the award will support the development of innovative technologies to edit the DNA found in mitochondria–energy-producing structures within human cells. His efforts could lead to new treatments for a range of currently incurable diseases caused by mutations in mitochondrial DNA.

“Most human DNA is found in the cellular nucleus, and gene-editing technologies are on the cusp of treating diseases of nuclear DNA,” says Shipman, who is also an assistant professor of bioengineering and therapeutic sciences at UC San Francisco. “But that technology can’t reach the DNA inside mitochondria. We need an entirely different set of tools so that people with mitochondrial diseases are not left behind.”

His team’s unique approach to access the DNA within mitochondria is to physically remove the structures from patients’ cells, which will allow them to be engineered in a laboratory setting. The goal is to be able to modify a patient’s mitochondrial DNA to fix disease-causing mutations, and then transplant healthy mitochondria back into the patient.

Several devastating conditions could potentially be treated with this novel approach, including Leber’s hereditary optic neuropathy, which causes blindness, as well as other diseases of the sensory and motor systems. It could also open new possibilities to treat degenerative diseases that have been linked to mitochondrial mutations that build up over a lifetime, such as Parkinson’s disease.

“We are thrilled that Seth has received this prestigious award,” says Gladstone President Deepak Srivastava, MD. “His young lab already has an impressive track record of building exciting new biotechnologies, and this funding provides real potential to solve a long-standing challenge in disease research.”

Shipman’s team will combine strategies from synthetic biology, bioengineering, genomics, and quantitative molecular research. They have already launched efforts to build mitochondrial gene-editing technology in well-established laboratory cell lines. Later, they plan to test these technologies in cells derived from people with mitochondrial diseases, followed by tests in mouse models of these diseases, such as Leber’s disease.

The ability to modify the mitochondrial genome at will would also provide an unprecedented tool for other scientists to explore mitochondrial DNA base by base, opening new opportunities for fundamental discovery.

“What keeps me going is the idea that we could create foundational technologies that will ultimately affect people’s lives,” Shipman says.

This new area of research represents a creative convergence of Shipman’s previous work with human cells and bacteria. Mitochondria are thought to have evolved from free-living bacteria that made their way inside larger cells, and some of the tools Shipman hopes to apply to modify mitochondria are inspired by his work with bacteria.

Past Gladstone recipients of the New Innovator Award include Shomyseh Sanjabi, PhD, (now at Genentech), who received it in 2013, and 2008 recipient Leor Weinberger, PhD, senior investigator, William and Ute Bowes Distinguished Professor, and director of the Center for Cell Circuitry at Gladstone Institutes. The award is part of the NIH’s High-Risk, High-Reward Research program, which provides funding to visionary scientists like Shipman.

###

About Seth Shipman

Seth Shipman holds a BA in neuroscience from Wesleyan University and a PhD in neuroscience from UC San Francisco, where he worked with Roger Nicoll to understand the molecular events that drive formation of synapses in the brain. His graduate work uncovered how a family of adhesion molecules, called neuroligins, can influence both synaptogenesis and plasticity. Shipman conducted postdoctoral research in genetics, synthetic biology, and stem cell biology at Harvard Medical School and Harvard University with George Church and Jeffrey Macklis, where he developed an approach to store information into the genomic DNA of living cells. Shipman was named a 2020 Pew Scholar in the Biomedical Sciences, and was added to the 2019 List of 10 Young Scientists to Watch by Science News.

About Gladstone Institutes

To ensure our work does the greatest good, Gladstone Institutes focuses on conditions with profound medical, economic, and social impact–unsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease. It has an academic affiliation with UC San Francisco.

Media Contact
Julie Langelier
[email protected]

Original Source

https://gladstone.org/news/gladstone-investigator-receives-nih-directors-new-innovator-award

Tags: BiologyCell BiologyGeneticsMedicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Rapid blood test identifies COVID-19 patients at high risk of severe disease

January 15, 2021
IMAGE

Special interests can be assets for youth with autism

January 15, 2021

Principles of care established for young adults with substance use disorders

January 15, 2021

USC study measures brain volume differences in people with HIV

January 15, 2021
Next Post
IMAGE

Pesticides and food scarcity dramatically reduce wild bee population

IMAGE

New climate model helps researchers better predict water needs

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeChemistry/Physics/Materials SciencesBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer ScienceMedicine/HealthEcology/EnvironmentMaterialsGeneticscancerPublic HealthCell Biology

Recent Posts

  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In