• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Giant leap for molecular measurements

Bioengineer by Bioengineer
September 1, 2020
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new tool to analyze molecules is 100 times faster than previous methods

IMAGE

Credit: © 2020 Ideguchi et al.

Spectroscopy is an important tool of observation in many areas of science and industry. Infrared spectroscopy is especially important in the world of chemistry where it is used to analyze and identify different molecules. The current state-of-the-art method can make approximately 1 million observations per second. UTokyo researchers have greatly surpassed this figure with a new method about 100 times faster.

From climate science to safety systems, manufacture to quality control of foodstuffs, infrared spectroscopy is used in so many academic and industrial fields that it’s a ubiquitous, albeit invisible, part of everyday life. In essence, infrared spectroscopy is a way to identify what molecules are present in a sample of a substance with a high degree of accuracy. The basic idea has been around for decades and has undergone improvements along the way.

In general, infrared spectroscopy works by measuring infrared light transmitted or reflected from molecules in a sample. The samples’ inherent vibrations alter the characteristics of the light in very specific ways, essentially providing a chemical fingerprint, or spectra, which is read by a detector and analyzer circuit or computer. Fifty years ago the best tools could measure one spectra per second, and for many applications this was more than adequate.

More recently, a technique called dual-comb spectroscopy achieved a measurement rate of 1 million spectra per second. However, in many instances, more rapid observations are required in order to produce fine-grain data. For example some researchers wish to explore the stages of certain chemical reactions that happen on very short time scales. This drive prompted Associate Professor Takuro Ideguchi from the Institute for Photon Science and Technology, at the University of Tokyo, and his team to look into and create the fastest infrared spectroscopy system to date.

“We developed the world’s fastest infrared spectrometer, which runs at 80 million spectra per second,” said Ideguchi. “This method, time-stretch infrared spectroscopy, is about 100 times faster than dual-comb spectroscopy, which had reached an upper speed limit due to issues of sensitivity.” Given there are around 30 million seconds in a year, this new method can achieve in one second what 50 years ago would have taken over two years.

Time-stretch infrared spectroscopy works by stretching a very short pulse of laser light transmitted from a sample. As the transmitted pulse is stretched, it becomes easier for a detector and accompanying electronic circuitry to accurately analyze. A key high-speed component that makes it possible is something called a quantum cascade detector, developed by one of the paper’s authors, Tatsuo Dougakiuchi from Hamamatsu Photonics.

“Natural science is based on experimental observations. Therefore, new measurement techniques can open up new scientific fields,” said Ideguchi. “Researchers in many fields can build on what we’ve done here and use our work to enhance their own understanding and powers of observation.”

###

Journal article

Akira Kawai, Kazuki Hashimoto, Tatsuo Dougakiuchi, Venkata Ramaiah Badarla, Takayuki Imamura, Tadataka Edamura and Takuro Ideguchi. Time-stretch infrared spectroscopy. Communications Physics. DOI: 10.1038/s42005-020-00420-3

Funding and support

This work was financially supported by JST PRESTO (JPMJPR17G2), JSPS KAKENHI (17H04852, 17K19071), Research Foundation for Opto-Science and Technology, and Murata Science Foundation.

Useful links

Ideguchi Group – https://takuroideguchi.jimdo.com/

Institute for Photon Science and Technology – http://www.ipst.s.u-tokyo.ac.jp/

Graduate School of Science – https://www.s.u-tokyo.ac.jp/en/index.html

Hamamatsu Photonics K.K. – https://www.hamamatsu.com/jp/en/index.html

Research Contact

Associate Professor Takuro Ideguchi

Institute for Photon Science and Technology, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan

Tel: +81-(0)3-5841-1026

Email: [email protected]

Press Contact

Mr. Rohan Mehra

Division for Strategic Public Relations, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN

Tel: +81-(0)80-9707-8450

Email: [email protected]

About the University of Tokyo

The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

Media Contact
Takuro Ideguchi
[email protected]

Original Source

https://www.u-tokyo.ac.jp/focus/en/press/z0508_00128.html

Related Journal Article

http://dx.doi.org/10.1038/s42005-020-00420-3

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsMaterialsOpticsParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Leveraging Virtual Reality to Combat Substance Use Relapse

August 16, 2025
blank

Exploring the Gut-Heart Link: How Microbiota Influence Heart Failure

August 16, 2025

ADAMTS2: Unlocking the Therapeutic Potential of a Multifunctional Protein

August 16, 2025

UBC Okanagan Study Reveals Individual Differences in How Fasting Impacts the Body

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leveraging Virtual Reality to Combat Substance Use Relapse

Exploring the Gut-Heart Link: How Microbiota Influence Heart Failure

ADAMTS2: Unlocking the Therapeutic Potential of a Multifunctional Protein

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.