• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Get diamonds, take temperature

Bioengineer by Bioengineer
September 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Quantum thermometer using nanodiamonds senses a ‘fever’ in tiny worms C. elegans

IMAGE

Credit: Masazumi Fujiwara, Osaka City University

A team from Osaka City University, in collaboration with other international partners, has demonstrated a reliable and precise microscope-based thermometer that works in live, microscopic animals based on quantum technology, specifically, detecting temperature-dependent properties of quantum spins in fluorescent nanodiamonds.

The research is published in Science Advances.

The optical microscope is one of the most basic tools for analysis in biology that uses visible light to allow the naked eye to see microscopic structures. In the modern laboratory, fluorescence microscope, an enhanced version of the optical microscope with various fluorescent biomarkers, is more frequently used. Recent advancements in such fluorescence microscopy have allowed for live imaging of the details of a structure, and through this, obtaining various physiological parameters in these structures, such as pH, reactive oxygen species, and temperature.

Quantum sensing is a technology that exploits the ultimate sensitivity of fragile quantum systems to the surrounding environment. High-contrast MRIs are examples of quantum spins in fluorescent diamonds and are some of the most advanced quantum systems working at the forefront of real-world applications. Applications of this technique to thermal biology were introduced seven years ago to quantify temperatures inside cultured cells. However, they had yet to be applied to dynamic biological systems where heat and temperature are more actively involved in biological processes.

The research team decorated the surface of the nanodiamonds with polymer structures and injected them to C. elegans nematode worms, one of the most popular model animals in biology. They needed to know the base “healthy” temperature of the worms. Once inside, the nanodiamonds moved quickly but the team’s novel quantum thermometry algorithm successfully tracked them and steadily measured the temperature. A fever was induced within the worms by stimulating their mitochondria with a pharmacological treatment. The team’s quantum thermometer successfully observed a temperature increase in the worms.

“It was fascinating to see quantum technology work so well in live animals and I never imagined the temperature of tiny worms less than 1 mm in size could deviate from the norm and develop into a fever,” said Masazumi Fujiwara, a lecturer at the Department of Science at Osaka City University. “Our results are an important milestone that will guide the future direction of quantum sensing as it shows how it contributes to biology,”

###

Osaka City University’s strategic grant spearheaded this interdisciplinary and international collaboration of six institutions from four countries, consisting of Osaka City University, Keio University, Kyoto University from Japan, Humboldt University of Berlin (Germany), Soochow University (China), and Chapman University (USA).

This research was co-authored by Fujiwara, Sun, Dohms, Nishimura, Suto, Takezawa, Oshimi, Zhao, Sadzak, Umehara, Teki, Komatsu, Benson, Shikano and Kage-Nakadai.

Short Video is available at: https://youtu.be/ypMC2scei6I

Media Contact
James Gracey
[email protected]

Original Source

https://www.osaka-cu.ac.jp/en/news/2020/200912-1

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aba9636

Tags: Biomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesOpticsPolymer Chemistry
Share13Tweet8Share2ShareShareShare2

Related Posts

New Lightning Forecasting Technology Aims to Safeguard Future Aircraft

New Lightning Forecasting Technology Aims to Safeguard Future Aircraft

November 4, 2025
New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

November 4, 2025

Carving Innovation: Novel Method Crafts Advanced Materials from Simple Plastics

November 4, 2025

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Cognitive Workload: A Safety Management Review

Risk Assessment Models Reduce Venous Thromboembolism Prophylaxis

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.