• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Genome scientists develop novel approaches to studying widespread form of malaria

Bioengineer by Bioengineer
February 8, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Analyses of Plasmodium vivax parasite RNAs help understand transmission and antimalarial treatment response

BALTIMORE, MD., Feb. 8 – Scientists at the Institute of Genome Sciences (IGS) at the University of Maryland School of Medicine (UMSOM) have developed a novel way with genome sequences to study and better understand transmission, treat and ultimately eradicate Plasmodium vivax, the most widespread form of malaria.
P. vivax is a single-celled transmitted by mosquitoes. It is the most widespread human malaria parasite, responsible for more than 8.5 million clinical malaria cases worldwide and threatening more than two billion people in 90 countries. Unlike Plasmodium falciparum, another species of malaria, P. vivax cannot be cultured in vitro and remains poorly understood and resilient to elimination efforts.

IGS researchers teamed with researchers at the Institut Pasteur in Cambodia to analyze the parasite gene expression profiles from P. vivax malaria patients enrolled in a study to determine the effectiveness of chloroquine as a malaria treatment. Using a combination of genomic and bioinformatic approaches, they compared the parasite transcriptomes, or set of Ribonucleic acid (RNA) molecules, from different patient infections and analyzed how the parasites responded to chloroquine, a common antimalarial drug, according to the research, which was published in Nature Communications.

“By analyzing the parasite mRNAs directly from infected patient blood samples, we were able to observe that not all infections contained the same proportion of the male and female parasites that are required for infecting mosquitoes and propagating the disease. This observation suggests that parasite transmission is more complex that we previously thought and, perhaps, that the parasite is able to modify its development to ensure optimal survival,” said David Serre, PhD, Associate Professor of Microbiology and Immunology and a member of IGS.

Dr. Serre, who is Principal Investigator, said researchers analyzed the gene expression changes induced by chloroquine treatment and demonstrated that this antimalarial drug, while efficiently eliminating P. vivax parasites, acts differently that it does on P. falciparum parasites. “This emphasizes the biological differences between these two human malaria parasites and the importance to specifically study this important pathogen if we hope to eventually eliminate malaria worldwide,” he said.

Genome sequencing studies have provided unique insights on this neglected human parasite, but are limited to identifying biological differences encoded in the DNA sequence. However, gene expression studies, which could provide information on the regulation of the parasite life cycle and its response to drugs, have been challenging to implement for this pathogen due to the heterogeneous mixture of parasite stages present in every patient’s infection.

“This important research will help us better understand how to treat, prevent and ultimately eliminate this species of malaria. This is particularly critical amid a growing concern of drug resistance to antimalarial treatments,” said UMSOM Dean E. Albert Reece, MD, PhD, MBA, University Executive Vice President for Medical Affairs and the John Z. and Akiko K. Bowers Distinguished Professor.

###

Dr. Serre and Dr. Adam Kim at IGS, collaborated with Dr. Jean Popovici and Dr. Didier Menard at the Malaria Molecular Epidemiology Unit at the Institut Pasteur in Cambodia. This study was funded by a National Institutes of Health (NIH) grant awarded to Dr. Serre (R01 AI103228).

Media Contact
Joanne E Morrison
[email protected]
410-706-2884
http://dx.doi.org/10.1038/s41467-019-08312-z

Tags: BiologyDisease in the Developing WorldGeneticsInfectious/Emerging DiseasesMedicine/HealthMicrobiologyParasitology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Metal Triggers Shape Shift in Sabiá Virus Spike

August 1, 2025
Global Upswing in Photosynthesis Driven by Land Counterbalanced by Oceans, New Study Finds

Global Upswing in Photosynthesis Driven by Land Counterbalanced by Oceans, New Study Finds

August 1, 2025

Supporting Me, Limiting You: Unraveling the Complex Interactions Within Intestinal Microbiota

August 1, 2025

How Behavior Shapes Morphological Evolution in Primates

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrating Genetics, Modeling, and Climate Data: A Breakthrough Method for Predicting Rice Flowering

Hollings Researchers Demonstrate How Natural Language Processing Enhances Medical Practice

Developing Neonatal Point-of-Care Ultrasound Programs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.