• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Gene regulatory factors enable bacteria to kill rivals and establish symbiosis in a squid

Bioengineer by Bioengineer
March 6, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Nate Follmer, Penn State


Two factors that control the expression of a key gene required by luminescent bacteria to kill competing bacterial cells have been identified. The finding, by researchers at Penn State, sheds light on the molecular mechanisms that enable different strains of bacteria to compete and establish symbiosis in the Hawaiian bobtail squid. Consequently, the study, which appears online in the Journal of Bacteriology, adds to our understanding of how the make-up of a host’s microbiome is determined, and may be applicable to more complex microbiomes in humans.

“We are trying to understand how bacteria interact with one another in the context of an animal-microbe symbiosis,” said Tim Miyashiro, assistant professor of biochemistry and molecular biology at Penn State and the leader of the research team. “With many of these symbioses, the surface of the host tissue becomes an ecosystem where the cells of different species and strains of bacteria interact and compete for resources. We knew that some of these bacterial strains have the capacity to attack and kill other strains, but we didn’t know how this mechanism is regulated genetically.”

When a Hawaiian bobtail squid hatches, bioluminescent bacteria in the surrounding environment begin to colonize tiny recesses called crypts in the squid’s light organ. The bacteria find shelter and a nutrient-rich environment within the crypts, where they produce a blue glow that researchers believe helps to obscure the nocturnal squids from predators below. Some strains of this bacteria, Vibrio fischeri, employ a needle-like mechanism known as a type VI secretion system (T6SS) to inject toxins into and kill nearby bacterial cells. Strains that use T6SS will kill susceptible bacterial strains in a crypt, whereas those without T6SS can cohabitate with other strains.

“The type VI system is found within many different bacteria,” said Kirsten R. Guckes, a postdoctoral researcher at Penn State and first author of the paper. “It was originally thought to primarily contribute to the virulence of pathogenic bacteria. For example, Vibrio cholerae, the bacteria that causes cholera, uses it. But, we now know that beneficial bacteria, like V. fischeri, also use T6SS to kill other bacteria. Because T6SS is thought to be energetically expensive for the bacteria to produce, and doing so could interfere with the bacteria’s ability to thrive and produce bioluminescence, understanding how the components of the system are regulated will help us to explain the host-symbiont relationship and the factors that contribute to establishing symbiosis.”

A key structural component of T6SS is Hcp, coded for by two functionally redundant genes. The research team showed that the expression of Hcp is dependent on two factors: the alternative sigma factor σ54 and the bacterial enhancer binding protein VasH. Additionally, they showed that VasH, which is required for the bacteria to kill other cells, regulates Hcp expression within the host, suggesting that the expression of T6SS is regulated during symbiosis.

“The knowledge that the environment of the host can stimulate the type VI system suggests that the system has been integrated into the developmental program that the bacteria use when they initiate symbiosis with the squid,” said Miyashiro. “So, it appears that the system is important for the establishment of symbiosis, whether or not other competing bacteria are present. Additionally, we can apply what we are learning in this relatively simple host-symbiont relationship to more complex microbiomes like the ones found in the human gut and on our skin.”

###

In addition to Miyashiro and Guckes, the research team at Penn State includes Andrew G. Cecere, Amanda L. Williams, and Anjali E. McNeil. The research was funded by the U.S. National Institutes of Health.

Media Contact
Sam Sholtis
[email protected]
814-865-1390

Original Source

http://science.psu.edu/news/Miyashiro3-2020

Related Journal Article

http://dx.doi.org/10.1128/JB.00777-19

Tags: BacteriologyBiochemistryBiologyDevelopmental/Reproductive BiologyEcology/EnvironmentEvolutionGeneticsMarine/Freshwater BiologyMicrobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

When Electrons Harmonize and Perceive Their Surroundings

When Electrons Harmonize and Perceive Their Surroundings

October 30, 2025
blank

Industry-Compatible Methods Enable Superconducting Germanium Production

October 30, 2025

Harnessing Computational Power to Predict Optimal Ligands for Generating Reactive Alkyl Ketone Radicals in Organic Synthesis

October 30, 2025

Advancing Toward a Sustainable Approach for Ethylene Production

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1291 shares
    Share 516 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34
/div>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Physiotherapy Approaches for Post- and Long-COVID Care

Study Reveals Common Misconceptions Among Americans About Alcohol and Cancer Risk

Streamlined CRISPR Evaluation Boosts Rare Variant Discovery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.