• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Gene linked to hearing in humans also linked to touch in sea anemones

Bioengineer by Bioengineer
April 1, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of investigators, including several researchers in biological sciences from the U of A, have published a paper that reports the discovery of a developmental gene linked to touch in the tentacles of sea anemones as well as hearing in humans. The gene, called pou-iv (pronounced “pow four”), is important for the development of auditory cells in the human inner ear.

Nagayasu Nakanishi

Credit: University Relations

An international team of investigators, including several researchers in biological sciences from the U of A, have published a paper that reports the discovery of a developmental gene linked to touch in the tentacles of sea anemones as well as hearing in humans. The gene, called pou-iv (pronounced “pow four”), is important for the development of auditory cells in the human inner ear.

Cnidarians, which include jellyfish, corals and sea anemones, are the closest living relatives of animals with bilateral symmetry, such as humans and other invertebrates. As such, cnidarians are useful for studying human evolutionary history because features shared by bilateral animals and cnidarians were likely present in our last common ancestor. A feature of note is the nervous system, and both bilaterians and cnidarians use similar sets of genes in neural development.

Auditory cells in the vertebrate inner ear that pick up vibrations to enable hearing are called hair cells. While they aren’t known to be able to hear, sea anemones have similar-looking cells on their tentacles — also called hair cells — that they use to sense the movements of their prey.

In mammals, pou-iv is required for proper hair cell development, and mice that lack pou-iv are deaf. Sea anemones also have a pou-iv gene, but, prior to the research team’s work, no one had ever examined its role in anemone hair cell development.

The researchers knocked out the pou-iv gene in a sea anemone and found that it resulted in abnormal development of tentacular hair cells, removing the animals’ response to touch. They also found that pou-iv is needed to turn on the polycystin 1 gene in sea anemones, which is required for normal fluid flow sensing by vertebrate kidney cells. Taken together, this suggests that pou-iv has a very ancient role in the development of touch sensation that goes back at least as far as our last common ancestor with sea anemones.

The U of A researchers are affiliated with the Nakanishi Lab, overseen by an assistant professor of biological sciences Nagayasu Nakanishi, who was a recent recipient of an NSF CAREER award for his work on the evolution of the nervous system. He is the corresponding author on the study.

“This study is exciting because it not only opened a new field of research into how mechanosensation develops and functions in a sea anemone, which has ample potential for novel and important discoveries (to be reported in the future),” Nakanishi said, “but it also informs us that the building blocks of our sense of hearing have ancient evolutionary roots dating back hundreds of millions of years into the Precambrian.”

The paper, titled “Cnidarian hair cell development illuminates an ancient role for the class IV POU transcription factor in defining mechanoreceptor identity,” was published in eLife. Additional authors included Ethan Ozment, Arianna N. Tamvacakis and Jianhong Zhou from the U of A. Pablo Yamild Rosiles-Loeza, Esteban Elías Escobar-Hernandez and Selene L Fernandez-Valverde from The Center for Research and Advanced Studies of the National Polytechnic Institute in Irapuato, Mexico, served as co-authors.



Journal

eLife

DOI

10.7554/eLife.74336.sa0

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Cnidarian hair cell development illuminates an ancient role for the class IV POU transcription factor in defining mechanoreceptor identity

Article Publication Date

1-Apr-2022

COI Statement

No competing interests declared

Share12Tweet7Share2ShareShareShare1

Related Posts

Exercise Increases Dopamine Release in Mice

Exercise increases dopamine release in mice

May 16, 2022
Neurulation

Precursor of spine and brain forms passively

May 16, 2022

Amazon deforestation threatens newly discovered fish species in Brazil

May 16, 2022

Arcadia Fund supports Plazi in its endeavor to rediscover known biodiversity

May 16, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVaccinesWeaponryVirologyUrogenital SystemVirusVaccineZoology/Veterinary ScienceUrbanizationVehiclesUniversity of WashingtonWeather/Storms

Recent Posts

  • Exercise increases dopamine release in mice
  • IU study explored how people’s beliefs impact overdose education and naloxone distribution programs
  • Children in underserved communities are at increased risk of being admitted to the pediatric ICU and of dying there; black children at most risk
  • Precursor of spine and brain forms passively
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....