• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Gene changes may predict breast cancer relapse, study suggests

Bioengineer by Bioengineer
January 22, 2019
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have identified genetic changes that may predict the likelihood of breast cancer relapse in women taking a common type of hormone therapy.

The findings could in future help to identify women at risk so they can be given alternative treatments to lower their chances of developing secondary breast cancer, which is incurable.

Hormone therapy has improved survival rates for breast cancer patients. In some cases, however, tumours can come back, even decades later. Little is known about how the tumours become resistant to the treatment.

Researchers at the University of Edinburgh studied tumour samples from breast cancer patients who had been taking a type of hormone therapy called an aromatase inhibitor for up to two years. None of the women had undergone surgery to remove their tumours.

The team looked at which genes were switched on and off in the tumours during treatment.

Tumour samples were taken before the women started hormone therapy, within the first few weeks and after four months of treatment. This allowed the scientists to see how treatment affected the tumours over time.

They found hormone therapy almost immediately triggered changes in the genes that were switched on in the tumours. These differences became more pronounced over time.

Crucially, they found subtle differences in the changes that occurred in tumours from women whose cancer had become resistant to treatment.

The team spotted chemical signatures – called epigenetic changes – were absent in tumours that developed resistance to hormone therapy but were present in tumours that had started growing again after shrinking initially.

These differences were present in the first weeks of hormone therapy, suggesting it may be possible to predict which women are likely to relapse.

The study was carried out at the Medical Research Council Centre Institute of Genetics and Molecular Medicine and the Edinburgh Cancer Research UK Centre at the University of Edinburgh. It is published in Breast Cancer Research and was funded by Breast Cancer Now.

Dr Andy Sims, of the MRC Institute of Genetics and Molecular Medicine, said: “Treatment resistance is hard to study and laboratory experiments often do not closely resemble the situation in patients. This is the first time we have been able to investigate genetic changes in individual patients’ tumours over time.

“We hope the findings will help to develop new tests that predict which women on hormone therapy are likely to relapse so that they can be offered alternative treatments.”

Dr Simon Vincent, Director of Research at charity Breast Cancer Now, which helped fund the study, said: “This is a promising early finding that could help us better understand how some breast cancers become resistant to therapy and what we can do about it. Drug resistance is a major hurdle that we must overcome if we are to finally stop women dying from breast cancer.

“It’s really encouraging that this study has identified epigenetic changes that may help predict which patients are more likely to see their cancer come back. We hope further research will now help to identify exactly when these changes may begin to appear and find ways to target them, enabling us to intervene at the right time.

“Through research like this, we hope to one day be able to identify when therapies are becoming less effective and when a change of treatment might be appropriate.”

###

Media Contact
Jen Middleton
[email protected]
44-131-650-6514
http://dx.doi.org/10.1186/s13058-018-1089-5

Tags: Breast CancercancerCell BiologyGeneticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Predicting Thyroid Cancer Recurrence with Explainable AI

December 17, 2025

Multi-Omics Identifies CYP2B6 as Key in Lung Cancer

December 17, 2025

Blood Markers’ Role in Oral Cancer Prognosis

December 17, 2025

AI Model Predicts Survival, Prioritizes Therapy in RCC

December 16, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

马兹杜替德对比安慰剂治疗2型糖尿病

NutriSighT: Transformer Predicts Enteral Nutrition Underfeeding

Smart Learning System with Emotion-Aware Content Delivery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.