• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Future ocean conditions could cause significant physical changes in marine mussels

Bioengineer by Bioengineer
October 9, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Plymouth

The increased temperature and acidification of our oceans over the next century have been argued to cause significant physical changes in an economically important marine species.

Scientists from the University of Plymouth exposed blue mussels (Mytilus edulis) to current and future levels of ocean acidification (OA) or warming (W), as well as both together – commonly known as OAW.

Initial comparison of mussel shells showed that warming alone led to increased shell growth, but increasing warming and acidification led to decreased shell growth indicating that OA was dissolving their shells.

However, analysis using cutting edge electron microscopy of the shell crystal matrix or ‘ultrastructure’ revealed that, in fact, warming alone has the potential to significantly alter the physical properties of the mussels’ shells, whereas acidification mitigated some of the negative effects.

Mussels grown under warming exhibited changes in their crystal structures including a propensity for increased brittleness, which would place mussels under greater threat from their many predators including crabs and starfish.

These negative effects were to some degree mitigated under acidified conditions with mussel shells showing evidence of repair, even though their crystals grew differently to the norm.

The study, published in a Frontiers of Marine Science special issue titled Global Change and the Future Ocean, is the latest research by the University into the potential effects of ocean warming and acidification on marine species.

Previous projects have suggested future conditions could significantly reduce the nutritional qualities of oysters as well as dissolving the shells of sea snails and reducing their overall size by around a third.

Dr Antony Knights, Associate Professor in Marine Ecology and the study’s lead author, said: “By the end of the century, we are predicted to see increases in sea surface temperature of 2-4°C and at least a doubling of atmospheric CO2. It is no surprise that would have an effect on marine species, but this research is surprising in that acidification appears to mitigate changes in shell structure attributable to rising sea temperatures, which is counter to what we would have predicted. It may be that increased CO2 in the water is providing more ‘raw material’ for the mussels to repair their shells that is not available under just warming conditions.”

Dr Natasha Stephen, Director of Plymouth Electron Microscopy Centre, added: “Until now, there have been relatively few studies assessing the combined effects of ocean acidification and warming on shell structures. However, understanding the changes that might result at a microscopic level may provide important insights in to how organisms will respond to future climate change. This study shows it can certainly have negative effects but also that they are not always predictable, which presents some serious challenges when it comes to trying to disentangle the consequences of climate change.”

###

Media Contact
Alan Williams
[email protected]

Original Source

https://www.plymouth.ac.uk/news/future-ocean-conditions-could-cause-significant-physical-changes-in-marine-mussels

Related Journal Article

http://dx.doi.org/10.3389/fmars.2020.567228

Tags: Atmospheric ScienceBiodiversityBiologyClimate ChangeClimate ScienceDevelopmental/Reproductive BiologyEcology/EnvironmentFisheries/AquacultureMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Flying Squirrels: Cranial Adaptations Across Biomes

Flying Squirrels: Cranial Adaptations Across Biomes

November 29, 2025
Uncovering AGT Gene Links to Hypertension in Iranians

Uncovering AGT Gene Links to Hypertension in Iranians

November 29, 2025

Key Protein Essential for Honey Bee Smell

November 28, 2025

Linking Gene Expression to Blue Crab Development

November 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    64 shares
    Share 26 Tweet 16

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transcriptomics Unveils Acinetobacter baumannii’s Inflammatory Response

Genetic Susceptibility’s Role in Necrotizing Enterocolitis?

CRISPR Technology Detects BK and JC Viruses Post-Kidney Transplant

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.