• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Freshwater fish species richness has increased in Ohio River Basin since ’60s

Bioengineer by Bioengineer
April 24, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The taxonomic and trophic composition of freshwater fishes in the Ohio River Basin has changed significantly in recent decades, possibly due to environmental modifications related to land use and hydrology, according to a study published April 24 in the open-access journal PLOS ONE by Mark Pyron of Ball State University, and colleagues.

Manmade threats to freshwater ecosystems are numerous and globally widespread. The legacy of agriculture and land use is manifested in the Ohio River Basin, drastically modified via logging and wetland draining following European colonization. After this period, the Ohio River Basin watershed was historically dominated by agriculture, and then converted from agriculture to forest during the 1960s-80s. The effects of these changes on fish throughout the basin are not fully known.

Pyron and colleagues used 57 years of rotenone and electrofishing fish collection survey data (1957-2014), collected by the Ohio River Valley Water Sanitation Commission, to examine changes to taxonomy, trophic classifications, and life history strategies of freshwater fish assemblages in the Ohio River Basin over this period.

Annual species richness varied from 31 to 90 species and generally showed a positive trend, increasing over time. Taxonomic and trophic structure was correlated with the decrease in agriculture and increase in forest. The trophic composition of fish catch also correlated with this changes to the Basin’s hydrology. In general, the environmental modifications were associated with more fish species which feed on plant matter and detritus, and fewer fish feeding on plankton and on other fish.

The authors believe that future land use modifications, climate change, and altered biotic interactions could continue to contribute to complex patterns of change in freshwater fish assemblages in the Ohio River.

Pyron adds: We found significant changes in species and trophic composition of freshwater fishes in the Ohio River Basin from 1957-2014. Species richness increased with year and the fish assemblages varied with changes in landuse and hydrologic alteration.”

###

Citation: Pyron M, Mims MC, Minder MM, Shields RC, Chodkowski N, Artz CC (2019) Long-term fish assemblages of the Ohio River: Altered trophic and life history strategies with hydrologic alterations and land use modifications. PLoS ONE 14(4): e0211848. https://doi.org/10.1371/journal.pone.0211848

Funding: The authors received no specific funding for this work.

Competing Interests: The authors have declared that no competing interests exist.

In your coverage please use this URL to provide access to the freely available article in PLOS ONE: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211848

Media Contact
Mark Pyron
[email protected]

Related Journal Article

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211848
http://dx.doi.org/10.1371/journal.pone.0211848

Tags: AgricultureBiologyEcology/EnvironmentFisheries/AquacultureHydrology/Water ResourcesMarine/Freshwater BiologyPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redefining Sex in Science: Three Rigid Frameworks

December 19, 2025
Pneumococcal S Protein Drives Cell Wall Defense

Pneumococcal S Protein Drives Cell Wall Defense

December 19, 2025

RNA-Seq Unveils Gene Expression Differences in Pea Subspp.

December 19, 2025

MHC Gene Variation Drives Lovebird Evolution

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Forceps Use Linked to Neonatal Bleeding Risks

Preoperative Nutrition Boosts Outcomes in Hirschsprung Kids

Bone Healing: Strain Effects from Loading Timing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.