• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Foxglove plants produce heart medicine; can science do it better?

Bioengineer by Bioengineer
April 13, 2020
in Science News
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two studies mark an early step in a UB biologist’s quest to understand how foxgloves make medicinal compounds

IMAGE

Credit: Zhen Wang

BUFFALO, N.Y. — Foxglove plants, found in many gardens, are known for the showers of bell-shaped flowers they produce.

But plants belonging to this genus, Digitalis, also harbor a less visible asset: Chemicals called cardiac glycosides, which have been recorded to treat heart failure since the 1780s, says University at Buffalo biologist Zhen Wang.

Wang’s research investigates how foxgloves create these medicinal compounds, with an eye toward improving the process. Farming foxgloves is time-consuming and labor-intensive, and Wang hopes to change that.

Specifically, her lab is investigating the chemical processes the plants use to create cardiac glycosides: what steps are taken, what genes are turned on, and what enzymes are deployed.

“The reason why plants make so many natural products with medicinal properties is because they are also fighting diseases,” says Wang, PhD, assistant professor of biological sciences in the UB College of Arts and Sciences. “Plants aren’t like animals. They can’t run away when stresses come, so they cope with this by becoming the most extraordinary chemists on the planet.”

And yet, “How plants synthesize many natural products is largely unknown,” Wang says. “I want to understand how we can harness the power of nature to make the process of producing medicinal compounds more efficient and sustainable. Foxgloves make these powerful compounds, but it takes two years to do so, and they don’t make them in a very large quantity. How can we improve this process?”

Two new studies illuminate chemical compounds in foxgloves

Wang’s team recently published a pair of papers detailing the characteristics of cardiac glycosides in two foxglove species: Digitalis purpurea, a showy purple flower found in many gardens; and Digitalis lanata, which is grown for medicinal purposes.

“This kind of study is important because we first have to know the accurate structure of natural compounds before we can explore their medicinal effects,” Wang says.

The first paper, published online in January in the Journal of Chromatography A, describes methods for assessing the exact mass and structure of cardiac glycosides, and compares compounds found in Digitalis purpurea and Digitalis lanata. The second study, published online in March in the journal Data in Brief, expands on the first, providing additional data on characteristics of cardiac glycosides in both species.

“When we looked at the cardiac glycosides in each of them, we found drastic differences,” Wang says. “In the industrial strain that’s grown for medicine, you see much higher amounts of cardiac glycosides, with much more diversity. I think this just highlights the adaptation of plants and how versatile they are as chemists.”

Both studies included contributions from researchers in the UB Department of Chemistry.

Improving on the foxglove’s natural skills

Digitalis lanata is cultivated for medicine because it makes a cardiac glycoside called digoxin. This compound is toxic in large quantities, but it’s prescribed sparingly, in small doses, to treat heart failure and certain heart rhythm abnormalities.

Current methods for producing digoxin are cumbersome: Because each foxglove plant makes only a little bit of the chemical, farmers must grow the crop in huge quantities, Wang says. That uses up a lot of agricultural land. The wait time is also long.

“It takes two years, from the time you plant the seed to the time the leaves are ready to harvest, and then you have to dry it in the silo,” Wang says. “Then, the plant is crushed into powder, and the compound is extracted and purified using chemical processes.”

If Wang’s team can figure out, step-by-step, how foxgloves make cardiac glycosides, scientists could leverage that information to explore a variety of improvements.

Biologists could engineer fast-growing microbes, such as yeast or harmless strains of bacteria, to produce cardiac glycosides more quickly. Plant scientists could genetically engineer foxgloves to make larger amounts of digoxin, which would increase the efficiency of farms and free up land for other useful crops.

Medicinal chemists could also work to develop new drugs that are similar to digoxin but safer.

“We can learn from nature,” Wang says. “We can study all of the available compounds that are found in the plants and then come up with our own design of compounds that are safer and more effective. That’s why I think it’s important to not just focus on the current drug digoxin, but to expand our focus to all the compounds in the same class, the cardiac glycosides.”

###

Media Contact
Charlotte Hsu
[email protected]

Original Source

http://www.buffalo.edu/news/releases/2020/04/013.html

Related Journal Article

http://dx.doi.org/10.1016/j.chroma.2020.460903

Tags: AgricultureBiochemistryBiologyBiotechnologyCardiologyChemistry/Physics/Materials SciencesGeneticsMedicine/HealthPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Texas Tech Researchers Unveil Innovative Acceleration Method for Crop Development

November 6, 2025
Distinguished Cancer Researcher Stuart S. Martin, PhD, Appointed Chair of Pharmacology & Physiology at UM School of Medicine

Distinguished Cancer Researcher Stuart S. Martin, PhD, Appointed Chair of Pharmacology & Physiology at UM School of Medicine

November 6, 2025

Nurses’ Competence in Dementia Care: Current Insights

November 6, 2025

Ferroptosis in Diabetes: Insights from Research

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Texas Tech Researchers Unveil Innovative Acceleration Method for Crop Development

Distinguished Cancer Researcher Stuart S. Martin, PhD, Appointed Chair of Pharmacology & Physiology at UM School of Medicine

Nurses’ Competence in Dementia Care: Current Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.