• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fossils confirm early diversification of spiny plants in central Tibet

Bioengineer by Bioengineer
July 5, 2022
in Biology
Reading Time: 3 mins read
0
A typical spiny plant Gleditsia microphylla (Fabaceae) native in Asia
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Spinescence (a general term for the phenomena of spines, prickles, and thorns on plants) is an important functional trait shared by numerous plant families worldwide and mainly provides physical protection against vertebrate herbivores. Even though spiny plants are distributed worldwide, our understanding of their evolutionary history remains incomplete, largely due to a dearth of fossil records. 

A typical spiny plant Gleditsia microphylla (Fabaceae) native in Asia

Credit: ZHANG Xinwen

Spinescence (a general term for the phenomena of spines, prickles, and thorns on plants) is an important functional trait shared by numerous plant families worldwide and mainly provides physical protection against vertebrate herbivores. Even though spiny plants are distributed worldwide, our understanding of their evolutionary history remains incomplete, largely due to a dearth of fossil records. 

In a study published in Nature Communications, researchers from the Xishuangbanna Tropical Botanical Garden (XTBG), the Institute of Vertebrate Paleontology and Paleoanthropology of the Chinese Academy of Sciences (CAS), the University of Bristol, and the Open University of the United Kingdom have reported exceptionally rich assemblages of plant spine fossils collected from late Eocene (about 39 million years ago) sediments in central Tibet. 

These fossils confirm an early diversification of spiny plants in the Tibetan region contemporaneous with the emergence of open, semi-wooded habitats by the late Eocene and early in the transition of central Tibet to full plateau formation. 

The researchers documented a total of 44 spine-bearing fossil specimens collected from two fossil localities within the central Tibetan Bangong-Nujiang Suture Zone: the Dayu (32° 20′ N, 89° 46′ E) and Xiede (31° 58′ N, 88° 25′ E) localities. They classified fossil spines into a total of seven morphotypes comprising prickles and thorns according to two criteria: prickles originate from the epidermis of plant organs such as stems, leaves and petioles, whereas thorns are modified branches and contain internal vascular bundles.

To investigate the emergence and early diversification of spiny plants, the researchers not only conducted molecular phylogenetic analyses, but also used proxy and modelling data to reconstruct the vegetation, climate, and herbivory that favored spiny plant evolution in central Tibet during the Eocene. In addition, they reconstructed the evolutionary history of spines across species of woody eudicots in Eurasia within the mega-phylogeny of plants. 

According to ZHANG Xinwen of XTBG, the modelling and proxy data point to “a drying and cooling climate” in Tibet’s central valley by the mid-Eocene. This change was accompanied by an increase in elevation of about one kilometer about 47 million years ago.   

Against this backdrop, the plant fossils record the beginnings of vegetation opening-up under a drying/cooling climate as the modern Tibetan Plateau grew from the late Eocene onwards. The observed spinescence marks the early development of physical defense mechanisms against large herbivore feeding pressure in the region. 

“Our study shows that regional aridification and expansion of herbivorous mammals may have driven the diversification of functional spinescence in central Tibetan woodlands, about 24 million years earlier than similar transformations in Africa,” said SU Tao of XTBG.



Journal

Nature Communications

DOI

10.1038/s41467-022-31512-z

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet

Article Publication Date

1-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Conserved Small Sequences Revealed by Yeast Ribo-seq

Conserved Small Sequences Revealed by Yeast Ribo-seq

October 3, 2025
Atlas Reveals Testicular Aging Across Species

Atlas Reveals Testicular Aging Across Species

October 2, 2025

Stem Cell Reports Announces New Additions to Its Editorial Board

October 2, 2025

New Insights on Bluetongue Virus in South Asia

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Insights on Sustaining Practice-Based Research Networks

Scientists Harness Ultrasound Holograms to Modulate Brain Networks

Sleep Patterns in U.S. Kids with Neurodiversity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.