• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 23, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fluorescent protein sheds light on bee brains

Bioengineer by Bioengineer
March 3, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of bee researchers involving Heinrich Heine University Düsseldorf (HHU) has integrated a calcium sensor into honey bees to enable the study of neural information processing including response to odours. This also provides insights into how social behaviour is located in the brain, as the researchers now report in the scientific journal PLOS Biology.

Honeybees

Credit: Christian Verhoeven (www.verhoevenfoto.de)

An international team of bee researchers involving Heinrich Heine University Düsseldorf (HHU) has integrated a calcium sensor into honey bees to enable the study of neural information processing including response to odours. This also provides insights into how social behaviour is located in the brain, as the researchers now report in the scientific journal PLOS Biology.

Insects are important so-called model organisms for research. Despite more than 600 million years of independent evolution, insects share more than 60% of their DNA with humans. For several decades it was mainly the fruit fly whose genetic code could be used to study biological processes. Later, such research was expanded to other insects, with particularly promising results coming from the honey bee. Bees display complex social behaviour – they perform sophisticated behaviours while employing orientation, communication, learning and memory abilities, which make them interesting subjects for research into the brain’s function and neural processing.

A team of researchers from the Universities in Düsseldorf, Frankfurt am Main, Paris-Saclay and Trento has now developed a method to enable direct observation of bee brains, a work which has now been published in PLOS Biology.

A calcium sensor was integrated into the neurons. Calcium plays an important role in nerve cell activity. “We modified the genetic code of honey bees to make their brain cells produce a fluorescent protein, a sort of sensor that allows us to monitor the areas that are activated in response to environmental stimuli. The intensity of the light emitted varies according to neural activity,” explains Dr Albrecht Haase, Professor of Neurophysics at the University of Trento.

Professor Beye indicates that “the realisation of this “sensor bee” was particularly challenging because we had to work on the DNA of queen bees. Unlike fruit flies, the queen bee cannot easily be maintained in the laboratory, because each one needs its own colony.”

The research started with the inoculation of a specific genetic sequence into over 4,000 bee eggs. The protracted breeding, testing and selection process ultimately resulted in seven queens carrying the genetic sensor. When they reproduced in their own colony, the queens transmitted the gene to some of their offspring.

The sensor developed by the team of researchers was then used to study the bees’ sense of smell and how the perception of smell is encoded in the neurons. Dr Julie Carcaud, Assistant Professor at the University of Paris-Saclay and Dr Jean-Christophe Sandoz, Research Director at CNRS in Paris, explain: “The insects were stimulated with various odours and observed with a high-resolution microscope. This made it possible to detect which brain cells are activated by these smells and how this information is distributed in the brain.”

Dr Marianne Otte, co-author of the study from Düsseldorf: “The recordings were performed in vivo using techniques which enabled us to look into the brains of the bees. The insects were fixed in a measuring stand and then presented with various odour stimuli.”

Professor Dr Bernd Grünewald from Goethe University Frankfurt am Main and Director of the Honeybee Research Center in Oberursel: “The new “sensor bee” makes it possible to study how communication works within colonies and, more generally, how sociality affects the animals’ brains.”

Original publication

Carcaud J, Otte M, Grünewald B, Haase A, Sandoz J-C, Beye M (2023) Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee. PLOS Biol 21(1): e3001984.

DOI: 10.1371/journal.pbio.3001984



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3001984

Subject of Research

Animals

Article Title

Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee

Article Publication Date

31-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Kalle Tunström

Babies or beauty?

March 22, 2023
Integrated structural biology provides new clues for cystic fibrosis treatment

Integrated structural biology provides new clues for cystic fibrosis treatment

March 22, 2023

In the controversial field of sex selection during assisted reproduction, a new technique appears safe and around 80% effective in producing offspring of the desired sex, per a small clinical trial

March 22, 2023

How vision begins

March 22, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UTSA researchers exploit vulnerabilities of smart device microphones and voice assistants

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

New wood-based technology removes 80% of dye pollutants in wastewater

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In