• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fixing the role of nitrogen in coral bleaching

Bioengineer by Bioengineer
June 5, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © 2017 Christian Voolstra

Excess nitrogen is shown to disrupt coral-algae symbiosis, triggering bleaching even in the absence of heat and light stress. With coral bleaching events intensifying as global sea temperatures rise, this is an important finding in the race to understand the mechanisms behind bleaching and ways to reduce the devastating impact on coral reefs1.

"Corals are remarkably adapted to thrive in the sun-lit, nutrient-poor waters of tropical oceans, mainly thanks to their intimate relationship with microscopic algae," said Dr. Claudia Pogoreutz of the Red Sea Research Center at KAUST. "In this relationship, corals regulate the algal growth and activity by limiting their access to nitrogen. This 'blackmailing' results in algae producing energy-rich sugars, through photosynthesis, for the coral animal."

Another microbial group–nitrogen-fixing microbes called diazotrophs–may play a key role in maintaining the productivity of the meta-organism by supplementing it with extra nitrogen for metabolism and growth. However, as increasing amounts of waste water, which is full of sugars and nitrogen, are pumped into our oceans, the delicate balance of this nitrogen cycle is in jeopardy. This could in turn exacerbate bleaching events.

The team, led by KAUST Associate Professor of Marine Science Christian Voolstra and in collaboration with scientists from University of Bremen in Germany, took a unique approach to examining how sugar enrichment and nitrogen disruption can contribute to coral bleaching by studying bleaching in the absence of heat and light stress.

"By working out how other environmental factors induce bleaching, we can identify similarities and previously overlooked processes that might explain what happens during bleaching caused by heat stress," explained KAUST Ph.D. student Nils Rädecker. "Samples from corals were placed in tanks in the KAUST aquaria labs. We added a sugar mixture to some of the tanks while others were kept as controls."

The sugar-enriched environment fueled the nitrogen-fixing microbes with extra energy, meaning they fixed more nitrogen. This excess nitrogen available to the coral animal upset the balance of nitrogen limitation to the algae, causing the breakdown of coral-algae symbiosis and triggering bleaching.

"This is the first study to highlight the importance of microbial processes like nitrogen fixation for coral health, and how disruptions to these processes may pose a previously unidentified threat under certain conditions," said Rädecker.

The researchers hope that highlighting the role of nitrogen in bleaching will prompt authorities worldwide to seriously tackle water pollution. While global climate change is undoubtedly the biggest threat to coral reefs, limiting further damage by cleaning up our oceans could help these fragile ecosystems survive.

###

Media Contact

Michelle D'Antoni
[email protected]

http://kaust.edu.sa/

Original Source

https://discovery.kaust.edu.sa/en/article/365/fixing-the-role-of-nitrogen-in-coral-bleaching http://dx.doi.org/10.1111/gcb.13695

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

Estimating Rice Canopy LAI Non-Destructively Across Varieties

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.