• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fish oil without the fishy smell or taste

Bioengineer by Bioengineer
September 15, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Sustainable processing delivers highest quality, minimizing odor and taste, says UC researcher

IMAGE

Credit: University of Cincinnati

A new study, co-led by University of Cincinnati researchers, describes the development of a refining process that scientists deem a superior method to help produce better dietary omega-3 health and dietary supplements containing fish oil.

Fish oil is widely known to be an excellent dietary source of omega-3 polyunsaturated fatty acids (PUFAs) having positive effects on human health including heart and eye health, inflammation and bone density.

The novel process uses a new tool called a vortex fluidic device (VFD) developed by research collaborators at Flinders University of Australia. The process is successful in lifting the quality of active ingredients of the PUFAs in fish oil, says Harshita Kumari, the study’s co-author and associate professor of pharmaceutical sciences at UC’s James L. Winkle College of Pharmacy.

The study now appears in Nature Papers Journals Science of Food.

Researchers applied the VFD-mediated encapsulated fish oil to enrich the omega-3 fatty acid content of apple juice.

“This novel process enriches the omega-3 fatty acid content of apple juice remarkably without changing its taste,” says Kumari, adding that two common consumer complaints regarding fish oil supplements is the taste and odor. Liquid omega-3 oils can also break down over time when exposed to oxygen which leads to degradation.

Compared to regular homogenization processing, Kumari says the device can raise PUFA levels and purity by lowering oxidation and dramatically improving shelf life. Natural bioactive molecules, also used in processing, reveal that the fish oil medium can absorb flavonoids and other health supplements.

###

In addition, Kumari and other researchers, including her UC doctoral student Marzieh Mirzamani, developed a technique for studying how this process occurs in the VFD in real time through small-angle neutron scattering.

Research endeavors such as this are an example of UC’s innovation agenda, an integral element of Next Lives Here, the University of Cincinnati’s strategic direction.

The study was published in partnership with Guangzhou University, the University of Cincinnati, Flinders University and the Australian Nuclear Science and Technology Organisation (ANSTO).

The project received funding from the Australian Research Council and was supported by ANSTO and the University of Cincinnati.

Media Contact
Angela Koenig
[email protected]

Original Source

https://www.uc.edu/news/articles/2020/09/n20945971.html

Related Journal Article

http://dx.doi.org/10.1038/s41538-020-00072-1

Tags: Food/Food ScienceMedicine/HealthNutrition/NutrientsPharmaceutical ChemistryPharmaceutical SciencePharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Tobacco’s Response to Aphids Unveiled by Sequencing

Tobacco’s Response to Aphids Unveiled by Sequencing

November 25, 2025
Sichuan Donkey Genome Analysis Unveils Diversity and Selection

Sichuan Donkey Genome Analysis Unveils Diversity and Selection

November 25, 2025

Wheat and Barley’s Shared Evolution Shapes Breeding

November 24, 2025

Captive Red Junglefowl: Genomic Insights and Implications

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    99 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

From Lab Tests to Real-World Goalkeeping Skills

Exploring Online Health Information and Medicine Choices

Tracing Forensic Age Estimation: 2002-2024 Trends

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.