• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

First-in-human clinical trial to assess gene therapy for Alzheimer’s disease

Bioengineer by Bioengineer
February 18, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UC San Diego researchers will inject harmless virus carrying a restorative gene into participants’ brains, where earlier animal studies suggest it may slow, prevent or reverse progression of the neurological disorder

IMAGE

Credit: UC San Diego Health Sciences

Researchers at University of California San Diego School of Medicine have launched a first-in-human Phase I clinical trial to assess the safety and efficacy of a gene therapy to deliver a key protein into the brains of persons with Alzheimer’s disease (AD) or Mild Cognitive Impairment (MCI), a condition that often precedes full-blown dementia.

The protein, called brain-derived neurotrophic factor or BDNF, is part of a family of growth factors found in the brain and central nervous system that support the survival of existing neurons and promote growth and differentiation of new neurons and synapses. BDNF is particularly important in brain regions susceptible to degeneration in AD.

In previous published research, principal investigator Mark Tuszynski, MD, PhD, professor of neuroscience and director of the Translational Neuroscience Institute at UC San Diego School of Medicine, and colleagues described the prevention and reversal of brain cell degeneration and death in animal models.

“We found that delivering BDNF to the part of the brain that is affected earliest in Alzheimer’s disease –the entorhinal cortex and hippocampus — was able to reverse the loss of connections and to protect from ongoing cell degeneration,” said Tuszynski. “These benefits were observed in aged rats, aged monkeys and amyloid mice.”

Amyloid mice are genetically engineered to inherit a mutation in the gene encoding the amyloid precursor protein, and as a result develop amyloid plaques — aggregates of misfolded proteins in the brain that are considered a hallmark characteristic of AD.

BDNF is normally produced throughout life in the entorhinal cortex, an important memory center in the brain and one of the first places where the effects of AD typically appear in the form of short-term memory loss. Persons with AD have diminished levels of BDNF.

But BDNF is not easy to work with. It is a large molecule and cannot pass through the blood-brain barrier. As a result, researchers will use gene therapy in which a harmless adeno-associated virus (AAV2) is modified to carry the BDNF gene and injected directly into targeted regions of the brain, where researchers hope it will prompt production of therapeutic BDNF in nearby cells.

The injections are precisely controlled to contain exposure to surrounding degenerating neurons since freely circulating BDNF can cause adverse effects, such as seizures.

The three-year-long trial will recruit 12 participants with either diagnosed AD or MCI to receive AAV2-BDNF treatment, with another 12 persons serving as comparative controls over that period.

This is the first safety and efficacy assessment of AAV2-BDNF in humans. A previous gene therapy trial from 2001 to 2012 using AAV2 and a different protein called nerve growth factor (NGF) found a heightened growth, axonal sprouting and activation of functional markers in the brains of participants.

“The BDNF gene therapy trial in AD represents an advance over the earlier NGF trial,” said Tuszynski. “BDNF is a more potent growth factor than NGF for neural circuits that degenerate in AD. In addition, new methods for delivering BDNF will more effectively deliver and distribute it into the entorhinal cortex and hippocampus.”

Despite billions of dollars of research investment and decades of effort, there are only two symptomatic treatments for AD. There is no cure or approved way to slow or stop progression of the neurological disorder that afflicts more than 5 million Americans and is the sixth leading cause of death in the United States.

Numerous clinical trials are ongoing to assess pharmaceutical remedies. Tuszynski said gene therapy, which debuted in 1980 and has been tested on multiple diseases and conditions, represents a different approach to a disease that requires new ways of thinking about the disease and new attempts at treatments.

“We hope to build on recent successes of gene therapy in other diseases, including a breakthrough success in the treatment of congenital weakness in infants (spinal muscular atrophy) and blindness (Leber Hereditary Optic Neuropathy, a form of retinitis pigmentosa),” Tuszynski said.

“BDNF gene therapy has the potential, unlike other AD therapies currently under development, to rebuild brain circuits, slow cell loss and stimulate cell function. We are looking forward to observing the effects of this new effort in patients with AD and MCI.”

###

For more information on this Phase I clinical trial, contact Michelle Mendoza at 858-249-3015 or email [email protected]

Media Contact
Scott LaFee
[email protected]

Tags: AgingAlzheimerMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Mastering Data Processing in Single-Cell Proteomics

October 16, 2025

Advancing Personalized Breast Cancer Therapy: Innovative Strategies for Patients with Reduced Tamoxifen Response

October 16, 2025

Motor Skills Gap: ADHD in Kids vs. Teens

October 16, 2025

Chromatin Remodeling Suppresses Prostate Cancer Oncogenes

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1251 shares
    Share 500 Tweet 312
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mastering Data Processing in Single-Cell Proteomics

Research Team at Universitat Jaume I Develops AI-Powered Robotic Platform to Drive Sustainable Industry Transition

Enhanced Plastic Waste Degradation and Hydrogen Production Using Nickel-Substituted Polyoxometalate-CdS Single-Cluster Photocatalysts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.