• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

First gene knockout in a cephalopod is achieved at Marine Biological Laboratory

Bioengineer by Bioengineer
July 30, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Karen Crawford

WOODS HOLE, Mass. –A team at the Marine Biological Laboratory (MBL) has achieved the first gene knockout in a cephalopod using the squid Doryteuthis pealeii, an exceptionally important research organism in biology for nearly a century. The milestone study, led by MBL Senior Scientist Joshua Rosenthal and MBL Whitman Scientist Karen Crawford, is reported in the July 30 issue of Current Biology.

The team used CRISPR-Cas9 genome editing to knock out a pigmentation gene in squid embryos, which eliminated pigmentation in the eye and in skin cells (chromatophores) with high efficiency.

“This is a critical first step toward the ability to knock out — and knock in — genes in cephalopods to address a host of biological questions,” Rosenthal says.

Cephalopods (squid, octopus and cuttlefish) have the largest brain of all invertebrates, a distributed nervous system capable of instantaneous camouflage and sophisticated behaviors, a unique body plan, and the ability to extensively recode their own genetic information within messenger RNA, along with other distinctive features. These open many avenues for study and have applications in a wide range of fields, from evolution and development, to medicine, robotics, materials science, and artificial intelligence.

The ability to knock out a gene to test its function is an important step in developing cephalopods as genetically tractable organisms for biological research, augmenting the handful of species that currently dominate genetic studies, such as fruit flies, zebrafish, and mice.

It is also a necessary step toward having the capacity to knock in genes that facilitate research, such as genes that encode fluorescent proteins that can be imaged to track neural activity or other dynamic processes.

“CRISPR-Cas9 worked really well in Doryteuthis; it was surprisingly efficient,” Rosenthal says. Much more challenging was delivering the CRISPR-Cas system into the one-celled squid embryo, which is surrounded by an exceedingly tough outer layer, and then raising the embryo through hatching. The team developed micro-scissors to clip the egg’s surface and a beveled quartz needle to deliver the CRISPR-Cas9 reagents through the clip.

Studies with Doryteuthis pealeii have led to foundational advances in neurobiology, beginning with description of the action potential (nerve impulse) in the 1950s, a discovery for which Alan Hodgkin and Andrew Huxley became Nobel Prize laureates in 1963. For decades D. pealeii has drawn neurobiologists from all over the world to the MBL, which collects the squid from local waters.

Recently, Rosenthal and colleagues discovered extensive recoding of mRNA in the nervous system of Doryteuthis and other cephalopods. This research is under development for potential biomedical applications, such as pain management therapy.

D. pealeii is not, however, an ideal species to develop as a genetic research organism. It’s big and takes up a lot of tank space plus, more importantly, no one has been able to culture it through multiple generations in the lab.

For these reasons, the MBL Cephalopod Program’s next goal is to transfer the new knockout technology to a smaller cephalopod species, Euprymna berryi (the hummingbird bobtail squid), which is relatively easy to culture to make genetic strains.

###

The MBL Cephalopod Program is part of the MBL’s New Research Organisms Initiative, which is widening the palette of genetically tractable organisms available for research – and thus expanding the universe of biological questions that can be asked.

First author Karen Crawford is a professor of biology at St. Mary’s College of Maryland and a summer Whitman Center investigator at the MBL.

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery – exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Media Contact
Diana Kenney
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2020.06.099

Tags: BiologyCell BiologyChemistry/Physics/Materials SciencesDevelopmental/Reproductive BiologyEvolutionGeneticsMarine/Freshwater BiologyMedicine/HealthMolecular Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Delta.g Raises £4.6 Million in Oversubscribed Seed Round to Propel Quantum Sensing Innovation

September 26, 2025
New Study Uncovers “Electron Highways” Driving Underground Chemistry and Pollution Remediation

New Study Uncovers “Electron Highways” Driving Underground Chemistry and Pollution Remediation

September 26, 2025

Superlattice Blotting Creates Highly Ordered Mesoporous Carbon with Abundant Nickel Single Atoms for Enhanced Electrocatalysis

September 26, 2025

From Waste to Wealth: Scientists Convert Biomass Tar into Premium Carbon Materials

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    78 shares
    Share 31 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    55 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping RNA Interactions in Arsenic-Induced Neurotoxicity

Acetamido Linkers in Anticancer Drug Design

Managing Complicated Pulmonary Valve Stenosis: A Case Study

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.