• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

First confirmation of new theory by metamaterial

Bioengineer by Bioengineer
June 10, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Chair of Theoretical Physics I / University of Wuerzburg

Topological metamaterials are applied as a novel platform to explore and study extraordinary effects. Instead of using natural materials, researchers artificially arrange the constituents of a topological metamaterial in a regular structure. Such an arrangement is analogous to a solid state in which the atoms form a crystal lattice. Usually, these platforms are used to simulate particular properties of solids in order to make them amenable to experimental investigation.

Physicists at Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, perform research on those topological metamaterials, a central scheme of the Würzburg-Dresden Cluster of Excellence ct.qmat – Complexity and Topology in Quantum Matter.

Novel topological phenomena

A related motif of solid state research in Würzburg is the discovery and characterization of novel topological phenomena. This concerns the study of topological insulators, which are insulating in the bulk, but feature conducting surface states. Scientists worldwide engage in intensive research on these materials as they exhibit compelling physical phenomena. One day, this research may lead to advances in semiconductor technology or in other fields.

The JMU researchers report on their newest results in the journal Nature Physics. Topological insulators are usually considered as isolated (Hermitian) systems. In contrast, scientists can tweak topological metamaterials such as to study the implications of energy exchange with the environment. These interactions influence the behaviour of the system from the outside, as would be the case for friction. This way, they experimentally verified the non-Hermitian skin effect (NHSE) previously predicted in theory.

All states localize at the edge

The NHSE involves that, in contrast to a common topological insulator, not only a small fraction but all states of the material appear at its edge, i.e. are localized there. This is described by Tobias Helbig and Tobias Hofmann, the joint first authors of the publication. They are both PhD students in the research group of Professor Ronny Thomale, head of the JMU Chair of Theoretical Physics I.

“Our research shows, among other things, that the physical principles known from isolated solid state systems need to be fundamentally modified in the non-Hermitian case,” the PhD students explain. The new findings would not yet have a direct application. However, they do have the potential to improve highly sensitive optical detectors, as an example.

Electric circuits as a center of innovation in basic research

The experiments leading to the new results were conducted with the group of Dr. Tobias Kießling and the JMU Chair of Experimental Physics III. Additional contributions and ideas have been brought forward by Professor Alexander Szameit from the University of Rostock. JMU Physicists cooperate with Szameit’s team on the topic of topological photonics within the cluster of excellence ct.qmat.

In order to demonstrate the non-Hermitian skin effect experimentally, the JMU team has used electric circuits with periodically arranged elements. Due to their resemblance to the crystal structure of a solid, such artificially arranged experimental settings are classified as a metamaterial.

Applications of topological matter in sight

Prospectively, the research team wants to investigate the interplay between topological states and non-Hermitian physics further. One key question will be to which extent the topological protection of states remains intact when interactions with the environment are present.

In the long term, the team intends to progress towards quantum hybrid circuits in which they plan to embed superconducting or other quantum mechanical circuit elements. Such circuits offer a versatile platform for the discovery of novel phenomena.

„We aim to transfer the insights from topological circuits to other metamaterial platforms in the pursuit of potential applications”, Professor Thomale sums up. This includes optical setups such as photonic waveguides. There, topologically protected states in non-Hermitian systems could prove relevant in the enhancement of signal processing and detectors as well as in the construction of a photonic quantum computer. Eventually, the ultimate scheme in the research on topological metamaterials is the reconnection of novel effects to actual solid states.

###

Media Contact
Ronny Thomale
[email protected]

Original Source

https://www.uni-wuerzburg.de/en/news-and-events/news/detail/news/first-confirmation-of-new-theory-by-metamaterial/

Related Journal Article

http://dx.doi.org/10.1038/s41567-020-0922-9

Tags: Chemistry/Physics/Materials SciencesElectromagneticsMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025

Self-Efficacy Modulates Nurses’ Response to Abusive Supervision

October 4, 2025

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025

Atractylodes lancea: Restoring Cardio-Renal Function in Rats

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

Self-Efficacy Modulates Nurses’ Response to Abusive Supervision

SNARE Neofunctionalization Driven by Vacuole Retrieval

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.