• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Findings offer ‘recipe’ for fine tuning alloys for high-temperature use

Bioengineer by Bioengineer
March 31, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Levente Vitos

Superalloys that withstand extremely high temperatures could soon be tuned even more finely for specific properties such as mechanical strength, as a result of new findings published today.

A phenomenon related to the invar effect – which enables magnetic materials such as nickel-iron (Ni-Fe) alloys to keep from expanding with increasing temperature – was reported to have been discovered in paramagnetic, or weakly magnetized, high-temperature alloys.

Levente Vitos, Professor at KTH Royal Institute of Technology in Stockholm, says the breakthrough research, which includes a general theory explaining the new invar effect, promises to advance the design of high-temperature alloys with exceptional mechanical stability. The article was published in the Proceedings of the National Academy of Sciences of the United States of America. Led by Vitos, the research team was comprised of KTH researchers Zhihua Dong, Wei Li and Stephan Schönecker.

Short for “invariant,” invar plasticity enables magnetically-disordered Ni-Fe alloys to show practically invariant deformation behavior over a wide temperature range – making them ideal for turbines and other mechanical uses in extremely high temperatures.

The invar effect however has never been fully understood, and Vitos says that these new findings help explain the peculiar high-temperature properties of special alloys used in jet engines, such as nickel-based superalloys.

Invar has two known effects: thermal expansion and elasticity (the ability to spring back after bending, for instance). Because both of these effects are linked with the interplay between temperature and magnetic order, they are considered to be specific to magnetically-ordered alloys.

Using first-principles quantum mechanical modeling, the researchers identified how invariant plasticity also occurs in non-magnetic alloys, when a structural balance exists at the atomic level between cubic and hexagonal close-packed structures.

The new discovery emerges from a long-term collaboration with industry to find alternatives to carcinogenic cobalt in hard metals, such as cutting tools. Vitos says this finding broadens the palette of invar phenomena and material compositions, with clear implications for new applications.

“Our findings create a new platform for tailoring high-temperature properties of technologically relevant materials towards plastic stability at elevated temperatures,” he says.

###

Media Contact
David Callahan
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.2023181118

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

WGCNA and ceRNA Illuminate Bovine Fat Deposition

WGCNA and ceRNA Illuminate Bovine Fat Deposition

September 30, 2025

Revolutionizing Drug Repositioning with Multi-Hop Graphs

September 30, 2025

User-Centric Companion Robot Design for Seniors

September 30, 2025

Nutritional Status Linked to Elderly Mental Health

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

WGCNA and ceRNA Illuminate Bovine Fat Deposition

Revolutionizing Drug Repositioning with Multi-Hop Graphs

User-Centric Companion Robot Design for Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.