• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Feeling groovy: Neurons integrate better with muscle grown on grooved platforms

Bioengineer by Bioengineer
January 22, 2019
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image by Janet Sinn-Hanlon, University of Illinois


CHAMPAIGN, Ill. — Growing muscle tissue on grooved platforms helps neurons more effectively integrate with the muscle, a requirement for engineering muscle in the lab that responds and functions like muscle in the body, University of Illinois researchers found in a new study.

Such engineered muscle with integrated nerves has applications in reconstructive and rehabilitative medicine, as well as for engineered biological machines or robots.

“With this approach, we can engineer muscle outside of the body so it can respond like muscle in the body,” said study leader Hyunjoon Kong, a professor of chemical and biomolecular engineering. “Usually people just culture muscle cells without neurons. It’s quite straightforward to do that. But it’s very difficult for neurons to integrate and communicate with the muscle so that it’s functional and responsive.”

Kong co-led the study with Rashid Bashir, a professor of bioengineering and dean of the College of Engineering. Bashir and Kong also are affiliated with the Carle Illinois College of Medicine.

The researchers’ goal is to create muscle that responds to neurotransmitters as it responds in the body, rather than relying on added electrical or chemical stimulation. While other groups have demonstrated engineered muscle with some nerve integration, called innervation, the function and response of the muscle has been limited, the researchers say.

The Illinois group altered the surface on which they incubated the muscle to see if topology affected muscle growth, function or innervation. The researchers grew mouse muscle tissue on increasingly grooved surfaces, then seeded the muscle with stem cells primed to become neurons and watched how the nerves formed and integrated with the muscle.

They found that on a flat surface, the muscle tissue lacked organization and nerves did not penetrate efficiently. However, the more grooved the surface, the more ordered the muscle fibers grew and the more successfully the neurons integrated with the muscle, said graduate student Clare (Eunkyung) Ko, the first author of the study.

“If you think about the physiological properties of muscle, it’s very aligned. There are a lot of fibers bundled together. The grooved substrate provides a similar environment to our natural skeletal muscle, so it can help the cells to align and form bundles like a real muscle,” Ko said. “These aligned bundles also guide the neurons as they extend along and into the muscle tissue. It gives them a path to grow.”

The researchers then tested the innervated muscle’s response to two neurotransmitters, natural chemicals that signal nerve cells – one that stimulates activity and one that inhibits it. The tissues grown on the grooved surfaces were the most responsive.

“If the muscle and neurons are functioning together, the muscles should contract when exposed to the chemical that stimulates neurons, and stop when exposed to the inhibitors. Ours did that,” Kong said. “We are the first ones to demonstrate that our muscle is functional and responding to these chemicals much better than others.”

The researchers plan to refine their grooved substrates in experiments with human muscle and nerve cells. They hope to develop their approach as a platform for drug screening and for tissue engineering for patients with muscle damage or injury.

“When there is damage to the muscle, there often is a gap in the nerves as well. This can cause the muscle to become weaker and smaller. So for injury treatment, it’s important to let the neurons re-innervate the muscle,” Kong said. “We could use a patient’s own cells to engineer muscle samples to screen which drugs could enhance the reintroduction of neurons to the muscle. We could test a variety of growth factors or proteins and see which would be good for regeneration of the muscle with the neurons together.”

The researchers also plan to use the innervated muscle to power miniature biological machines, or bio-bots. Bashir’s group has developed bio-bots powered by muscle tissue that responds to electricity and light, and integration with neurons would provide the machines with sensing capability that could provide direction – for example, moving toward an environmental toxin to neutralize it, Bashir said.

“Our goal is to build a little neuronal circuit that could sense chemical concentration and translate that to motion,” Bashir said.

###

The National Science Foundation, the National Institutes of Health and the National Research Foundation of Korea supported this work.

Editor’s notes: To reach Hyunjoon Kong, call (217) 333-1178; email: [email protected].

The paper “Matrix topography regulates synaptic transmission at the neuromuscular junction” is available online or from the News Bureau.

Media Contact
Liz Ahlberg Touchstone
[email protected]
217-244-1073

Original Source

https://news.illinois.edu/view/6367/741197

Related Journal Article

http://dx.doi.org/10.1002/advs.201801521

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesMedicine/HealthMusculatureOrthopedic MedicineTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Autophagy and HSP70 Drive Mytilus Thermal Stress Adaptation

Autophagy and HSP70 Drive Mytilus Thermal Stress Adaptation

December 20, 2025
Moringa Seed Extracts Mitigate Heat Stress in Rabbits

Moringa Seed Extracts Mitigate Heat Stress in Rabbits

December 20, 2025

Unraveling Jiangxi Indigenous Pigs: Genetics, Diversity, Traits

December 20, 2025

Anopheles arabiensis Transcriptome and Microbiota Shift Revealed

December 20, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Functionality in Liver Transplant Candidates: 2025 Insights

Mapping Meningococcal C Vaccination in Brazil, 2012-2024

Honeybee Silk: A Multifunctional Biomaterial Breakthrough

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.