• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 17, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Feeding small fish to people instead of to farmed salmon could make seafood production more sustainable

Bioengineer by Bioengineer
March 1, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Farming Atlantic salmon requires a high volume of wild-caught fish as feed, but produces only a small percentage of the world’s farmed fish supply. A study published March 1 in PLOS Sustainability and Transformation by David F. Willer at University of Cambridge, United Kingdom, and colleagues suggests redirecting wild-caught fish towards human consumption instead of salmon farming could relieve pressure on fish stocks while increasing seafood production.

Fishmeal and fish oil inputs in Scottish farmed salmon production.

Credit: Willer et al., 2022, PLOS Sustainability and Transformation, CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

Farming Atlantic salmon requires a high volume of wild-caught fish as feed, but produces only a small percentage of the world’s farmed fish supply. A study published March 1 in PLOS Sustainability and Transformation by David F. Willer at University of Cambridge, United Kingdom, and colleagues suggests redirecting wild-caught fish towards human consumption instead of salmon farming could relieve pressure on fish stocks while increasing seafood production.

Increased demand for seafood has driven an expansion in aquaculture. However, 90 percent of commercial fish feed is made from food-grade fish such as sardines and anchovies that are edible to humans. To analyze the efficiency of aquaculture in terms of net nutrient production, researchers first quantified the volume of micronutrients and wild fish retained by fish-fed farmed salmon using 2014 data on Scotland’s farmed salmon production. They calculated the volume of micronutrients used as aquaculture inputs and compared it to salmon aquaculture nutrient outputs. Using these data, the researchers modeled several seafood production scenarios to assess potential sustainability benefits of alternative seafood systems.

The researchers found that in 2014, 460,000 tonnes of wild-caught fish were used to produce 179,000 tonnes of Scottish salmon. 76 percent of the wild-caught fish were edible for human consumption. The data also suggest that multiple alternative seafood production models would be more efficient in terms of net nutrient production, so could significantly reduce wild fish capture while increasing global seafood supply. However, these data were limited to only one year (2014). Future studies are needed to better understand how to operationalize a global shift away from farmed fish toward sustainable fisheries.

According to the authors, “Feed production now accounts for 90% of the environmental footprint of salmonid production. Allowing salmonid production to expand further via its current approach will place exceptional stress on global fish stocks already at their limit. Our results suggest that limiting the volume of wild-caught fish used to produce farmed salmon feed may relieve pressure on wild fish stocks while increasing supply of nutritious wild fish for human consumption.”

The authors add: “Nutritious fish stocks are being squandered by salmon farming. Scientists reveal that eating the wild-caught fish destined for salmon farms would allow nearly 4 million tons of fish to be left in the sea while providing an extra 6 million tons of seafood.”



DOI

10.1371/journal.pstr.0000005

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Maximising sustainable nutrient production from coupled fisheries-aquaculture systems

Article Publication Date

1-Mar-2022

COI Statement

The authors have declared that no competing interests exist.

Share12Tweet7Share2ShareShareShare1

Related Posts

Pregnancy Screening WVU

New tool developed by WVU researchers makes it easier to identify pregnant patients with eating disorders

May 17, 2022
Multiple growth forms of C. Albicans

Friendly fungi announce themselves to their hosts

May 17, 2022

Infrared imaging to measure glymphatic function

May 17, 2022

Scientists see signs of traumatic brain injury in headbutting muskox

May 17, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesUniversity of WashingtonWeaponryVaccineZoology/Veterinary ScienceVehiclesWeather/StormsVirologyViolence/CriminalsUrogenital SystemVirusUrbanization

Recent Posts

  • Robert Buderi’s History of Kendall Square, “the most innovative square mile on the planet”
  • How to build an ‘explainable AI’ framework to speed up the innovation process
  • New tool developed by WVU researchers makes it easier to identify pregnant patients with eating disorders
  • First animals developed complex ecosystems before the Cambrian explosion
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....