• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Feeding off fusion or the immortalization of tumor cells

Bioengineer by Bioengineer
September 11, 2020
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Knoblich lab/IMBA

Worldwide, cancer is the second leading cause of death – in 2018 alone, it claimed approximately 9.6 million lives, or one in six deaths. The development of cancer is incredibly complex and is controlled by an interplay of various factors – only recently, it became clear that the majority of human cancers such as cervical, gastrointestinal and breast among others, originate from adult stem cells becoming deregulated. These adult stem cells are present in many of our organs, where they provide a constant supply of cells to replace old and dead cells. Identifying the mechanisms of how these developmentally tightly regulated stem cells break free from their regulations is an important topic within the scientific community, including the Knoblich lab at IMBA.

One key step in tumorigenesis are the mechanics driving tumor cell initiation, which trigger their fate in becoming tumorigenic. They have, thus far, mainly been studied at gene regulation levels, by researching tumor suppressor genes MYC, p53 or KRAS. Metabolic changes within tumor cells are a well-known characteristic, but whether these are a consequence or the cause of tumor cell immortalization is still not known, and thus the focus of the most recent publication from Knoblich’s team.

The researchers chose the fruit fly Drosophila melanogaster as tumor model – this established yet somewhat unconventional model organism boasts a long history in tumor studies, with discoveries in mutations of tumor suppressor genes dating back to the 1970s. Learnings from this simple model organism can then be used as a powerful tool as basis for further studies on human genes. In Drosophila, the scientists visualized the exact timepoint when tumor initiating cells became immortal and manipulated the process genetically – a feat which is not readily accomplished in mammalian tumors, due to their high complexity.

“We used a Drosophila neural stem cell (NSCs) tumor model, which is induced by the depletion of the well-known tumor suppressor called Brat. By using this model, we investigated whether the metabolism plays an active role in Brat tumor cell immortalization. Our findings in Drosophila will then be used as a basis for subsequent studies in human cells and lay the basis for mechanistic studies of human cancers,” explains Jürgen Knoblich, IMBA group leader and Scientific Director.

Indeed, the researchers found Brat tumors to be highly oxidative, with higher oxygen consumption rates compared to normal brains. This proved to be quite the surprising discovery, as tumors are widely considered to be glycolytic.

In an additional exciting finding, the scientists from Knoblich’s team found that the oxidative metabolism, which is a mitochondrial oxygen-dependent bioenergetic pathway, plays a key role in tumor cell immortalization. “We noticed that during tumor initiation, the mitochondrial membranes are fused. This drastic change in mitochondrial morphology leads to an increase in efficiency in oxidative phosphorylation, which explains why we found increased levels of NAD+ and NADH, two key molecules involved in bioenergetics,” explains François Bonnay, postdoc in the Knoblich lab and first author of the study.

With additional experiments, the scientists showed that in the Drosophila brain, it is indeed the increased oxidative phosphorylation and NADH/NAD+ metabolism mediated by mitochondrial fusion which is absolutely necessary for tumor initiating cells to become immortal.

“Our findings overturn previous concepts about the biology of these tumors and open up an array of exciting follow up questions, including whether the mechanisms we just discovered in the fruit fly are also applicable to mammalian tumors. Questions we will also strive to answer are, how exactly does the NADH/NAD+ metabolism favour tumor cell immortalization, and does it achieve this via signalling, or through epigenetic changes? We are thrilled to advance our work in this field”, says Knoblich.

###

Original publication: “Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis”, François Bonnay, Ana Veloso et al., Cell, 2020.

DOI doi.org/10.1016/j.cell.2020.07.039

About IMBA

IMBA – Institute of Molecular Biotechnology – is one of the leading biomedical research institutes in Europe focusing on cutting-edge stem cell technologies, functional genomics, and RNA biology. IMBA is located at the Vienna BioCenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research. The stem cell and organoid research at IMBA is being funded by the Austrian Federal Ministry of Science and the City of Vienna.

http://www.imba.oeaw.ac.at

Media Contact
Ines Mehu-Blantar
[email protected]

Original Source

https://www.imba.oeaw.ac.at/research-highlights/feeding-off-fusion-the-immortalization-of-tumor-cells/

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2020.07.039

Tags: BiologyBiotechnologyCell BiologyMolecular Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

Unlocking FLS2’s Secrets for Broader Pathogen Detection

Unlocking FLS2’s Secrets for Broader Pathogen Detection

November 6, 2025
Meditation Retreat Accelerates Reprogramming of Body and Mind, New Study Shows

Meditation Retreat Accelerates Reprogramming of Body and Mind, New Study Shows

November 6, 2025

Speeding Up Transgenic Plant Growth: Harnessing Natural Regeneration to Cut Weeks Down to Days

November 6, 2025

Selective Lipid Deposition in Triploid Rainbow Trout

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ATP-Gated Switch Controls Human mRNA Export

Scientists Discover Adaptive Music Technologies Boost Exercise Engagement and Enjoyment

UBC Study Reveals Strong Access to Abortion Pill in B.C., Highlights Persistent Gaps

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.