• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Eye color genes are critical for retinal health

Bioengineer by Bioengineer
March 23, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Metabolic pathways consist of a series of biochemical reactions in cells that convert a starting component into other products. There is growing evidence that metabolic pathways coupled with external stress factors influence the health of cells and tissues. Many human diseases, including retinal or neurodegenerative diseases, are associated with imbalances in metabolic pathways. Elisabeth Knust leads a team of researchers from the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden, Germany, who describe an essential role for one such metabolic pathway in maintaining retinal health under conditions of stress. They studied the classic Drosophila genes cinnabar, cardinal, white, and scarlet, originally characterized decades ago and named due to their role in eye color pigmentation, in particular the formation of the brown pigment of the fly eye. These genes encode components of the kynurenine pathway, whose activity converts the amino acid tryptophan by various steps into other products. In this study, the authors have highlighted the function of this metabolic pathway in retinal health, independent of its role in pigment formation.

Eyes of Drosophila melanogaster with different colors

Credit: Hebbar et al., Plos Genetics, 2023 / MPI-CBG

Metabolic pathways consist of a series of biochemical reactions in cells that convert a starting component into other products. There is growing evidence that metabolic pathways coupled with external stress factors influence the health of cells and tissues. Many human diseases, including retinal or neurodegenerative diseases, are associated with imbalances in metabolic pathways. Elisabeth Knust leads a team of researchers from the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden, Germany, who describe an essential role for one such metabolic pathway in maintaining retinal health under conditions of stress. They studied the classic Drosophila genes cinnabar, cardinal, white, and scarlet, originally characterized decades ago and named due to their role in eye color pigmentation, in particular the formation of the brown pigment of the fly eye. These genes encode components of the kynurenine pathway, whose activity converts the amino acid tryptophan by various steps into other products. In this study, the authors have highlighted the function of this metabolic pathway in retinal health, independent of its role in pigment formation.

The Kynurenine pathway is an evolutionary conserved metabolic pathway that regulates a variety of biological processes. Its disruption can result in the buildup of either toxic or protective biomolecules or metabolites, which can worsen or improve, respectively, the health of the brain, including the retina. Knowledge on this important metabolic pathway was recently extended by the research team, led by Elisabeth Knust, Director Emerita at the MPI-CBG, in their publication in the journal Plos Genetics. Being aware of the remarkable conservation of this metabolic pathway and the genes that regulate it, they used flies as a model system to unravel the role of individual metabolites in retinal health. The researchers looked at four genes – cinnabar, cardinal, white, and scarlet – named after abnormal eye colors following their loss in flies. “Since the Kynurenine pathway is conserved from flies to humans, we asked whether these genes regulate retinal health independent of their role in pigment formation,” says Sarita Hebbar, one of the lead authors of the study.

To find this out, the scientists used a combination of genetics, dietary changes, and biochemical analysis of metabolites to study different mutations of the fruit fly, Drosophila melanogaster. Sofia Traikov, a co-author, developed a method for the biochemical analysis of the metabolites of the Kynurenine pathway. This allowed the researchers to link different metabolite levels to the health state of the retina. They found that one metabolite, 3-hydroxykynurenine (3OH-K), is damaging to the retina. More importantly, they could show that the degree of degeneration is influenced by the balance between toxic 3OH-K and protective metabolites, such as Kynurenic Acid (KYNA), and not just by their absolute amounts. Sarita continues: “We also fed two of these metabolites to normal (non-mutant) flies and found that 3OH-K enhanced stress-induced retinal damage, whereas KYNA protected the retina from stress-related damage.” This means that retinal health in certain conditions can be improved by altering the ratio of metabolites of the Kynurenine pathway.

Furthermore, by targeting these four genes and therefore four distinct steps within the pathway, the researchers were able to demonstrate that not only the accumulation of 3OH-K as such, but also its location in the cell and hence its availability in further reactions, is important for retinal health.

“This work shows that the Kynurenine pathway is important not only in pigment formation but that the level of individual metabolites fulfills important roles in maintaining retinal health,” says Elisabeth Knust, who supervised the study. She concludes, “In the future, the ratio of the various metabolites and the specific sites of their accumulation and activity should be taken into account in therapeutic strategies for diseases with impaired Kynurenine pathway function, observed in various neurodegenerative conditions.” 



Journal

PLoS Genetics

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Modulating the Kynurenine pathway or sequestering toxic 3-hydroxykynurenine protects the retina from light induced damage in Drosophila

Article Publication Date

23-Mar-2023

COI Statement

The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

Bioinspired sensor for the endoscopic imaging system includes a pixel array that can capture light on six different spectral channels.

Innovative endoscopic imaging system can detect multiple fluorescent tracers

May 26, 2023
Frog dad with tadpoles

Life through rose-coloured glasses

May 26, 2023

When the cell digests itself: How inherited neurodegenerative diseases develop

May 26, 2023

Networks in the dog brain

May 26, 2023

POPULAR NEWS

  • the University of Haifa

    Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    34 shares
    Share 14 Tweet 9
  • The case for engineering our food

    73 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study finds distinct patterns of pre-existing brain health characteristics in stroke patients

New moms and dads left unprepared for parenthood by government health ‘failures’, report warns

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In