• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Eye blinking on-a-chip

Bioengineer by Bioengineer
March 24, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new approach could lead to ‘cornea-on-a-chip’ devices that more accurately test the effects of drugs on the human eye

IMAGE

Credit: Mindy Takamiya/Kyoto University iCeMS

Researchers at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) have developed a device that moves fluids over corneal cells similarly to the movement of tears over a blinking eye. The scientists hope their findings, reported in the journal Lab on a Chip, will help improve ophthalmic drug development and testing, and advance understanding of how blinking affects the corneal surface.

The cornea is the transparent disc that covers the central surface of the eye. It acts as a protective barrier against dust, germs, and other potentially damaging objects.

One way scientists test ophthalmic drugs is to administer them into rabbit’s eyes. But rabbits blink significantly less than humans, so drugs have more of a chance to permeate the rabbit’s cornea and enter into the eye. Alternatively, scientists use tiny wells containing human corneal cells. But here also, the cells aren’t exposed to the normal environment of a living human eye.

Kyoto University pharmaceutical scientist Rodi Abdalkader and micro-engineer Ken-ichiro Kamei collaborated to develop a device that overcomes these issues. They 3D-printed a device that contains four upper and four lower channels, separated by a clear polyester porous membrane. Corneal cells are incubated in each upper channel on top of the membrane. After seven days, they form a barrier of cells that separates the upper and lower channels. Fluid is then moved through the device to emulate the pressure exerted on one side of the cornea by a blinking eyelid and moving tears, and on the other side by the fluid of the inner eye.

Interestingly, they found that this movement changed the shape of the cells and increased the production of filaments, which are known for keeping corneal cells flexible and elastic.

“It was really interesting to find that an eye-blinking-like stimulus has a direct biological impact on these cells,” says Abdalkader. “We blink frequently and unconsciously all the time. With each blink, a shear stress is applied on the corneal barrier that causes the cornea counter-defence system to secrete fibrous filaments, like keratins, to overcome the effects of the stress.”

Not only does the device emulate human blinking while using human cells, but it also allows testing four different samples under similar conditions at the same time.

“We believe this platform will pave the way for improved ocular drug development, and further investigations into the effects of the shear stress caused by eye blinking on the eye’s surface,” says Abdalkader.

###

DOI: 10.1039/C9LC01256G

About Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS):

At iCeMS, our mission is to explore the secrets of life by creating compounds to control cells, and further down the road to create life-inspired materials.

https://www.icems.kyoto-u.ac.jp/

For more information, contact:

I. Mindy Takamiya/Mari Toyama

[email protected]

Media Contact
I. Mindy Takamiya
[email protected]
81-906-838-1188

Related Journal Article

http://dx.doi.org/10.1039/C9LC01256G

Tags: BiochemistryBiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyClinical TrialsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insect, Bacterial, Fungal Life on Sus scrofa Carrion

Nanoscale All-Optical Polarization Modulation via Nonlinear Interferometry

Sanger vs. Next-Gen Sequencing of WWII Victims

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.