• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Experimental vaccine for deadly tickborne virus effective in cynomolgus macaques

Bioengineer by Bioengineer
November 30, 2020
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Monkeys protected against CCHFV, which infects thousands of people annually

IMAGE

Credit: WHO

WHAT:
An experimental vaccine developed in Europe to prevent infection by Crimean-Congo hemorrhagic fever virus (CCHFV) has protected cynomolgus macaques in a new collaborative study from National Institutes of Health scientists. The animals received the DNA-based candidate vaccine through intramuscular injection immediately followed by electroporation–a process in development for human vaccines that helps cells absorb DNA. The study, published in Nature Microbiology, comes about three years after the same research group developed the macaque model for CCHFV. No specific treatments or vaccines for CCHFV exist.

Crimean-Congo hemorrhagic fever, first described in 1944, is spread primarily by the bite of Hyalomma ticks found in the Middle East, Asia, Africa and parts of Europe. The virus also can be transmitted to people by direct contact with infected fluids or tissue from people or certain livestock species. CCHFV infects up to 15,000 people annually, according to the World Health Organization. About 1 in 8 of those who are infected develop severe disease, which leads to about 500 deaths each year. CCHFV also is considered a possible agent of bioterrorism.

Scientists from NIH’s National Institute of Allergy and Infectious Diseases (NIAID) in Hamilton, Montana, tested the candidate vaccine on six cynomolgus macaques, each of which received three inoculations, followed by electroporation, at three-week intervals. No animals experienced significant adverse reactions upon vaccination. Through regular blood tests, the researchers confirmed that the candidate vaccine generated protective antibodies against the virus. They then infected the vaccinated animals with CCHFV and monitored them for clinical signs for six days, after which they looked for virus in their organs. Six control animals infected with CCHFV but not given the experimental vaccine showed signs of disease throughout the study. The vaccinated animals did not. Their blood tests remained largely unchanged with no indication of progressive virus infection and no virus shedding. Virus was nearly undetectable in their liver, kidneys, lungs and adrenal glands, all targets of CCHFV.

Collaborators at the Karolinska Institute in Sweden developed the candidate vaccine with colleagues from the Public Health Agency of Sweden, the National Veterinary Institute of Sweden, the Justus Liebig University in Germany and NIAID’s Rocky Mountain Laboratories in Montana. The candidate vaccine uses two proteins from CCHFV to generate protection.

The researchers next plan to study if the vaccine candidate is effective with fewer than three doses and whether it offers long-term protection. They also plan to continue evaluating the use of electroporation to make vaccination more effective.

###

ARTICLES:
D Hawman et al. A DNA-based vaccine confers significant protection from CCHFV infection in Cynomolgus macaques. Nature Microbiology DOI: 10.1038/s41564-020-00815-6 (2020).

E Haddock et al. A cynomolgus macaque model for Crimean-Congo haemorrhagic fever. Nature Microbiology DOI: 10.1038/s41564-018-0141-7 (2018).

WHO:
Heinz Feldmann, M.D., Ph.D., chief of NIAID’s Laboratory of Virology, and David Hawman, Ph.D., Laboratory of Virology, are available to comment on these studies.

CONTACT:
To schedule interviews, please contact Ken Pekoc, (301) 402-1663, [email protected].

NIAID conducts and supports research–at NIH, throughout the United States, and worldwide–to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH…Turning Discovery Into Health®

Media Contact
Ken Pekoc
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41564-020-00815-6

Tags: Disease in the Developing WorldInfectious/Emerging DiseasesMedicine/HealthVaccines
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    139 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Updated Guidelines on Pharmacotherapy for Obesity Management Released

Neutrophil Traps Worsen Periodontitis by Disrupting T-Cells

Invasive Therapy vs. Oral Treatment: Parkinson’s Quality of Life at 12 Months

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.