• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Exercise adds up to big brain boosts

Bioengineer by Bioengineer
March 24, 2019
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

March 24, 2019 – Anyone who trains for a marathon knows that individual running workouts add up over time to yield a big improvement in physical fitness. So, it should not be surprising that the cognitive benefits from workouts also accumulate to yield long-term cognitive gains. Yet, until now, there was has been little research to describe and support the underlying neurobiology. In new work being presented this week about the effects of exercise on the brain at the Cognitive Neuroscience Society (CNS) in San Francisco, researchers are finding that brain changes that occur after a single workout are predictive of what happens with sustained physical training over time.

“There is a strong and direct link between physical activity and how your brain works,” says Wendy Suzuki of New York University (NYU), who is chairing a symposium on the topic at CNS. “People still do not link physical health to brain and cognitive health; they think about fitting into a bikini or losing that last pound, not about all the brain systems they are improving and enhancing every time they work out.”

But as new research comes out to illuminate how different types, amounts, and intensities of physical activity improve brain function, cognitive neuroscientists hope to see a sea change in how the general public views exercise – from the effects of long-term training to bringing the positive effects of physical activity to socioeconomically disadvantaged communities.

The new study showing that immediate cognitive effects from exercise mirror long-term ones is the first of its kind, as short- and long-term effects are typically examined in different studies, says Michelle Voss of the University of Iowa, who led the study. Her team’s initial findings are good news for the field of cognitive neuroscience, as they suggest that the brain changes observed after a single workout study can be a biomarker of sorts for long-term training.

Study participants underwent fMRI brain scans and working memory tests before and after single sessions of light and moderate intensity exercise and after a 12-week long training program. The researchers found that those who saw the biggest improvements in cognition and functional brain connectivity after single sessions of moderate intensity physical activity also showed the biggest long-term gains in cognition and connectivity.

The study used recumbent cycles that had motorized pedals, allowing the participants to either apply their own force to turn the pedals or to let the pedals do the work. “This feature allowed us to keep pedal speed constant while only changing heart rate between conditions of light and moderate intensity activity,” Voss says. “This is novel for acute exercise paradigms, which often use sitting as a control condition.”

Voss looks forward to replications of this first study with larger samples. Her lab is currently recruiting participants for a similar study that will include 6 months of training instead of 3 months, to give participants more time to improve cardiorespiratory fitness. But in the meantime, she says: “Think about how physical activity may help your cognition today and see what works. Day-by-day, the benefits of physical activity can add up.”

Michelle Carlson of Johns Hopkins University is working to bring that message to socioeconomically disadvantaged communities through a novel program called Experience Corps Program, which embeds physical activity into weekly volunteering for older adults to mentor children in local elementary schools. “We need to address socioeconomic barriers like cost and accessibility to motivate older adults to regularly engage in healthful behaviors,” Carlson says. “And many people don’t appreciate the power of physical activity for our brains.”

Multiple studies from the Experience Corps Program have found that the regular walking and other physical activity generated from the volunteering experience has resulted in improved memory and other cognitive functions, as well as changes to the prefrontal cortex that mirror those seen after 6 months of exercise in cognitively at-risk older adults. “These and related findings in my lab and others have contributed to our understanding that targeting low-intensity lifestyle activity is increasingly being recognized as important and scalable intervention to promote any physical activity,” she says.

Her team has also developed a 3-D game to simulate real-world activity for both cognition and mobility. Carlson will be presenting new data at the CNS meeting on 14 participants who completed a 5-week intervention with the game. “What is cool is that most participants, regardless of baseline cognitive and physical limitations, learn and improve steadily over sessions,” she says. “We want to help a large segment of the aging population that is sedentary or unable to tap into volunteer opportunities by providing opportunities to increase meaningful physical activity.”

Suzuki has experienced the transformative power of exercise on the brain firsthand. When working to lose weight, she notices her memory improving over time. She became so fascinated by the link between physical activity and brain function that she transformed her lab entirely, from one that studied the hippocampus in nonhuman primate to one that focused solely on human cognition and exercise. “I’ve really gone all in,” she says.

There are a whole host of questions cognitive neuroscientists can help answer — from how much and what types of exercise are optimal for brain health to how to translate findings from young, healthy populations to older, at-risk ones. Suzuki hopes to see improved neuroimaging techniques in the coming years that better capture what happens in the brain during and after exercise.

###

The symposium “Imaging the immediate and long-term effects of exercise in humans” is taking place at the CNS annual meeting in San Francisco – featuring talks by Michelle Voss and Michelle Carlson, as well as Michael Yassa and Emrah Duzel. More than 1,500 scientists are attending the meeting from March 23-26, 2019.

CNS is committed to the development of mind and brain research aimed at investigating the psychological, computational, and neuroscientific bases of cognition. Since its founding in 1994, the Society has been dedicated to bringing its 2,000 members worldwide the latest research to facilitate public, professional, and scientific discourse.

Media Contact
Lisa M.P. Munoz
[email protected]

Tags: AgingBehaviorExerciseMedicine/HealthMemory/Cognitive ProcessesMental HealthneurobiologyPublic HealthSocial/Behavioral ScienceSports/Recreation
Share27Tweet8Share2ShareShareShare2

Related Posts

blank

Unraveling EMT’s Role in Colorectal Cancer Spread

August 2, 2025
Gut γδ T17 Cells Drive Brain Inflammation via STING

Gut γδ T17 Cells Drive Brain Inflammation via STING

August 2, 2025

Agent-Based Framework for Assessing Environmental Exposures

August 2, 2025

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    38 shares
    Share 15 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.